The compression of hyperspectral images (HSIs) has recently become a very attractive issue for remote sensing applications because of their volumetric data. In this paper, an efficient method for hyperspectral image compression is presented. The proposed algorithm, based on Discrete Wavelet Transform and Tucker Decomposition (DWT-TD), exploits both the spectral and the spatial information in the images. The core idea behind our proposed technique is to apply TD on the DWT coefficients of spectral bands of HSIs. We use DWT to effectively separate HSIs into different sub-images and TD to efficiently compact the energy of subimages. We evaluate the effect of the proposed method on real HSIs and also compare the results with the well-known compression methods. The obtained results show a better performance of the proposed method. Moreover, we show the impact of compression HSIs on the supervised classification and linear unmixing.
Unlike multispectral (MSI) and panchromatic (PAN) images, generally the spatial resolution of hyperspectral images (HSI) is limited, due to sensor limitations. In many applications, HSI with a high spectral as well as spatial resolution are required. In this paper, a new method for spatial resolution enhancement of a HSI using spectral unmixing and sparse coding (SUSC) is introduced. The proposed method fuses high spectral resolution features from the HSI with high spatial resolution features from a MSI of the same scene. Endmembers are extracted from the HSI by spectral unmixing and the exact location of the endmembers is obtained from the MSI. This fusion process by using spectral unmixing is formulated as an ill-posed inverse problem which requires a regularization term in order to convert it into a well-posed inverse problem. As a regularizer, we employ sparse coding, for which a dictionary is constructed using high spatial resolution MSI or PAN images from unrelated scenes. The proposed algorithm is applied to real Hyperion and ROSIS datasets. Compared with other state-of-the-art algorithms based on pansharpening, spectral unmixing and sparse coding methods, the proposed method is shown to significantly increase the spatial resolution while perserving the spectral content of the HSI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.