Electrical contacts may include various sub-systems or wiring harness connected via detachable connectors which depend on physical contacts for the electrical connectivity. Electrical contacts range from high, medium to low current depending on their usage. However, in the real-life condition, electrical contacts characteristics, especially at the interface, undergoes a gradual change which can be due to corrosion, temperature variation, aging, strained harnesses, discontinuities induced by vibration etc. These changes introduce additional parasitic circuits in the system. Moreover, in some cases where the contact resistance increases due to electrical loses, the local temperature may increase, thereby accelerating contact degradation. This paper presents a numerical analysis on the variation of temperature of a simple low current contact model having a thin oxide film layer at the interface which serves as the ageing factor using finite element method (FEM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.