A new series of [mu-tris-{1,n-bis(tetrazol-1-yl)alkane-N4,N4'}iron(II)] bis(perchlorate) spin-crossover coordination polymers ([Fe(nditz)3](ClO4)2]; n = 4-9) has been synthesised and characterised. The ditetrazole bridging ligands provide octahedral symmetry at the iron(II) centres while allowing the distance between iron(II) centres to be varied. These polymers have therefore been investigated to determine the effects of spacer length on their thermal and light-induced spin-transition behaviour. An increase in the number of carbon atoms in the spacer (n) raises the thermal spin-crossover temperature, while decreasing the stability of the light-induced metastable state generated through the light-induced excited spin state trapping (LIESST) effect by irradiating the sample at 530 nm. Remarkably, however, the parity of the spacer also has an effect, enabling the series of complexes to be divided into two sub-series depending on whether the bridging ligand possesses an even or an odd number of carbon atoms. An explanation at the molecular level using the single configurational coordinate (SCC) model is presented.
The 3D coordination polymer [Fe(4ditz)3](PF6)2.solv consists of three interpenetrating infinite networks. There are cavities between iron atoms of different networks, which are partly filled with solvent molecules. With a change of the solvent used during synthesis from methanol to ethanol, the magnetic behavior of the materials changes. Both show an abrupt two-step spin crossover from low spin (S = 0) to high spin (S = 2) with the methanolate curve lying 7 K higher and showing a small hysteresis. Single crystal and powder diffraction studies show that they both have the same structure, but in powder form, the methanolate slowly loses methanol to finally leave about 0.075 MeOH/Fe. In comparison, the bigger ethanol remains at 0.25 EtOH/Fe. These results, in conjunction with thermodynamic data, strongly suggest that the differences in magnetic behavior are largely entropic in nature. Possible reasons for this are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.