White lasers are becoming increasingly relevant in various fields since they exhibit unprecedented properties in terms of beam brightness and intensity modulation. Here we introduce a white laser based on a polymer matrix encompassing liquid crystals and multiple organic chromophores in a multifunctional phase-separation system. The separation of the hydrophilic matrix and the hydrophobic liquid crystals leads to the formation of a complex optically active layer, featuring lasing emission tuneable from blue to red. White laser emission is found with an optical excitation threshold of approximately 12 mJ/cm 2. Importantly, an external electric field can be used to control the device emission intensity. White lasers with low-voltage (≤10 V) controllable emission might pave the way for a new generation of broadband light sources for analytical, computational, and communication applications.
One of the most important drawback of organic dyes is their low photo-stability which reduces possibility of their commercial utilization. In this article we employ the strategy of dye re-crystallization from oversaturated matrix in order to enhance material’s durability. One of the main advantages of perylene derivative is ability to form emissive j-aggregates, good miscibility and incorporation into liquid crystalline matrix. Investigation of perylene-based dye and LC matrix brought as the result very efficient light amplification modulation by applied external electric field. In our article we show that Stimulated Emission (STE) is possible to achieve from perylene-derivative based system, at typical fluence thresholds for laser dyes: 3.9 mJ/cm2. Moreover, presented system proves ultra-high photostability, showing lack of STE reduction even after 12 000 excitation laser pulses. Furthermore, we proved the possibility of light emission intensity control using external electric field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.