Aims: Mitochondrial Ca 2+ homeostasis is crucial for balancing cell survival and death. The recent discovery of the molecular identity of the mitochondrial Ca 2+ uniporter pore (MCU) opens new possibilities for applying genetic approaches to study mitochondrial Ca 2+ regulation in various cell types, including cardiac myocytes. Basal tyrosine phosphorylation of MCU was reported from mass spectroscopy of human and mouse tissues, but the signaling pathways that regulate mitochondrial Ca 2+ entry through posttranslational modifications of MCU are completely unknown. Therefore, we investigated a 1 -adrenergic-mediated signal transduction of MCU posttranslational modification and function in cardiac cells. Results: a 1 -adrenoceptor (a 1 -AR) signaling translocated activated proline-rich tyrosine kinase 2 (Pyk2) from the cytosol to mitochondrial matrix and accelerates mitochondrial Ca 2+ uptake via Pyk2-dependent MCU phosphorylation and tetrametric MCU channel pore formation. Moreover, we found that a 1 -AR stimulation increases reactive oxygen species production at mitochondria, mitochondrial permeability transition pore activity, and initiates apoptotic signaling via Pyk2-dependent MCU activation and mitochondrial Ca 2+ overload. Innovation: Our data indicate that inhibition of a 1 -AR-Pyk2-MCU signaling represents a potential novel therapeutic target to limit or prevent mitochondrial Ca 2+ overload, oxidative stress, mitochondrial injury, and myocardial death during pathophysiological conditions, where chronic adrenergic stimulation is present. Conclusion: The a 1 -AR-Pyk2-dependent tyrosine phosphorylation of the MCU regulates mitochondrial Ca 2+ entry and apoptosis in cardiac cells. Antioxid. Redox Signal. 21, 863-879.
Mice with a knock-in mutation (Y524S) in the type I ryanodine receptor (RyR1) die when exposed to short periods of temperature elevation (≥ 37 °C). We demonstrate that treatment with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) prevents heat-induced sudden death in Y524S mice. The AICAR protection is independent of AMPK activation and results from a newly identified action on the mutant RyR1 to reduce Ca2+ leak, preventing Ca2+ dependent increases in both reactive oxygen and reactive nitrogen species that act to further increase resting Ca2+ concentrations. If unchecked, the temperature driven increases in resting Ca2+ and ROS/RNS create an amplifying cycle that ultimately triggers sustained muscle contractions, rhabdomyolysis and death. Although antioxidants are effective in reducing this cycle in vitro, only AICAR prevents the heat induced death in vivo. Our findings suggest that AICAR is likely to be effective in prophylactic treatment of humans with enhanced susceptibility to exercise/heat-induced sudden death associated with RyR1 mutations.
Calcium release units (CRUs) and mitochondria control myoplasmic [Ca2+] levels and ATP production in muscle, respectively. We recently reported that these two organelles are structurally connected by tethers, which promote proximity and proper Ca2+ signaling. Here we show that disposition, ultrastructure, and density of CRUs and mitochondria and their reciprocal association are compromised in muscle from aged mice. Specifically, the density of CRUs and mitochondria is decreased in muscle fibers from aged (>24 months) vs. adult (3-12 months), with an increased percentage of mitochondria being damaged and misplaced from their normal triadic position. A significant reduction in tether (13.8±0.4 vs. 5.5±0.3 tethers/100μm2) and CRU-mitochondrial pair density (37.4±0.8 vs. 27.0±0.7 pairs/100μm2) was also observed in aged mice. In addition, myoplasmic Ca2+ transient (1.68±0.08 vs 1.37±0.03) and mitochondrial Ca2+ uptake (9.6±0.050 vs 6.58±0.54) during repetitive high frequency tetanic stimulation were significantly decreased. Finally oxidative stress, assessed from levels of 3-nitrotyrosine (3-NT), Cu/Zn superoxide-dismutase (SOD1) and Mn superoxide dismutase (SOD2) expression, were significantly increased in aged mice. The reduced association between CRUs and mitochondria with aging may contribute to impaired cross-talk between the two organelles, possibly resulting in reduced efficiency in activity-dependent ATP production and, thus, to age-dependent decline of skeletal muscle performance.
A primary obstacle in translating genetics and genomics data into therapeutic strategies is elucidating the cellular programs affected by genetic variants and genes associated with human diseases. Broadly applicable high-throughput, unbiased assays offer a path to rapidly characterize gene and variant function and thus illuminate disease mechanisms. Here, we report LipocyteProfiler, an unbiased high-throughput, high-content microscopy assay that is amenable to large-scale morphological and cellular profiling of lipid-accumulating cell types. We apply LipocyteProfiler to adipocytes and hepatocytes and demonstrate its ability to survey diverse cellular mechanisms by generating rich context-, and process-specific morphological and cellular profiles. We then use LipocyteProfiler to identify known and novel cellular programs altered by polygenic risk of metabolic disease, including insulin resistance, waist-to-hip ratio and the polygenic contribution to lipodystrophy. LipocyteProfiler paves the way for large-scale forward and reverse phenotypic profiling in lipid-storing cells, and provides a framework for the unbiased identification of causal relationships between genetic variants and cellular programs relevant to human disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.