Overhead spray and brush roller (OSBR) treatment has been shown to remove significantly more Salmonella from tomato surfaces than flume treatment. However, OSBR is not widely used in tomato packing facilities compared with other commodities, and little is known about whether brushing causes microabrasions or other physical damage. Bacteria such as Pectobacterium, a soft rot-producing plant pathogen, and Salmonella, a human pathogen, show increased survival and growth on damaged tomato surfaces. This study evaluated whether OSBR treatment had a negative effect on the safety and/or marketability of tomatoes by examining its effect on Pectobacterium and Salmonella survival. Pectobacterium survival was evaluated on inoculated tomatoes that were OSBR treated with water or sanitizer (100 ppm of NaOCl, 5 ppm of ClO2, or 80 ppm of peracetic acid). A 15-s OSBR treatment using water or sanitizer achieved a 3-log CFU/ml reduction in Pectobacterium levels. Survival of Pectobacterium and Salmonella on OSBR-treated, untreated, and puncture-wounded tomatoes stored at 25°C and 75 to 85 % relative humidity for 7 days was also assessed. Both Pectobacterium and Salmonella populations declined rapidly on OSBR-treated and untreated tomatoes, indicating that brushing does not damage tomato fruit to the extent of promoting better pathogen survival. In contrast, the survival of both organisms was significantly (P ≤ 0.05) higher on artificially wounded fruit. These results indicate that OSBR treatment does not increase the survival and growth of Pectobacterium or Salmonella on tomato surfaces and that it is effective in reducing Pectobacterium levels on the surface of inoculated tomatoes. These results suggest that, if used properly, an OSBR system in packinghouses is effective in removing surface contamination and does not affect tomato quality or safety.
FSHN10-04, a 3-page fact sheet by Alexandra Chang, Alina Balaguero, Renée Goodrich-Schneider, and Keith R. Schneider, is part of the Food Safety on the Farm series and discusses the need for traceback requirements to identify and eliminate sources of microbial hazards, outbreaks, and food contamination. Includes references. Published by the UF Department of Food Science and Human Nutrition, June 2010.
FSHN10-04/FS152: Food Safety on the Farm: Good Agricultural Practices and Good Handling Practices—Traceback (ufl.edu)
FSHN10-05, a 5-page fact sheet by Alina Balaguero and Keith R. Schneider, discusses Trichinosis, an infection caused by the foodborne pathogen Trichinella, and provides information on preventing the infection, recognizing symptoms, and receiving treatment. Includes references. Published by the UF Department of Food Science and Human Nutrition, June 2010.
FSHN10-05/FS153: The Cause of Trichinosis and Its Prevention Through Safe Food Handling Practices (ufl.edu)
Good agricultural practices (GAPs) and good handling practices (GHPs) encompass the general procedures growers, packers, and processors of fresh fruits and vegetables should follow to ensure the safety of their product. GAPs usually address preharvest practices (i.e., in the field), while GHPs cover postharvest practices, including packing and shipping. This 3-page fact sheet covers the GAPs of transporting crops. This major revision is a part of the Food Safety on the Farm series and was written by Christopher R. Pabst, Jaysankar De, Alina Balaguero, Jessica Lepper, Renée Goodrich-Schneider, and Keith R. Schneider and published by the UF/IFAS Food Science and Human Nutrition Department. http://edis.ifas.ufl.edu/fs151
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.