Proteins are able to stabilize dispersed food systems due to their amphiphilic nature, acting as emulsifiers. Their interfacial properties can be influenced by different methods, including the formation of protein-phenol nanocomplexes. In this study, the interfacial behavior of phenolic compounds and protein-phenol nanocomplexes was first characterized according to the oil-water partitioning behavior of phenolic acid derivatives according to their molecular structure and its impact on interfacial tension. The influence of the phenolic compounds on protein film formation and its properties by dilatational rheology was then evaluated. The most phenolic acid derivatives are predominantly present in the aqueous phase. Despite their hydrophobic benzene body, weak interfacial activity was observed depending on their chemical structure. This result supports possible protein-phenol nanocomplex formation in the aqueous phase and possible interactions at the oil-water interface. Protein-phenol nanocomplexes showed decreased interfacial adsorption properties and decreased viscoelastic interfacial behavior, depending on the expansion of the delocalized π-electrons in the phenol.
The physical stability of protein-based emulsions depends on intra- and intermolecular interactions of the interfacial protein-film. As studied in aqueous systems before, phenolic acid derivatives (PADs) non-covalently or covalently crosslink proteins depending on pH-value and thus, may impact interfacial protein-films. Whether these interactions occur in the same manner at the interface as in water and how they vary the properties of the interfacial protein-film has not been clarified. The present study aimed to investigate the interfacial protein-film viscoelasticity and physical emulsion-stability after non-covalently (pH 6.0) and covalently (pH 9.0) crosslinking depending on PAD-structure. For this purpose, we studied an interfacial β-lactoglobulin film with dilatational rheology after crosslinking with PADs, varying in number of π-electrons and polar substituents. Then, we analyzed the physical emulsion-stability by visual evaluation and particle size distribution. The results indicate that PADs with a high number of π-electrons (rosmarinic acid and chicoric acid) weaken the protein-film due to competing of phenol-protein interactions with protein-protein interactions. This is reflected in a decrease in interfacial elasticity. PADs with an additional polar substituent (verbascoside and cynarine) seem to further weaken the protein film, since the affinity of the PADs to the interface increases, PADs preferentially adsorb and sterically hinder protein-protein interactions. In emulsions at pH 6.0 and thus low electrostatic repulsion, PADs promote bridging-flocculation. Due to higher electrostatic repulsion at pH 9.0, the PADs are sterically hindered to form bridges, even though they are polymeric. Hence, our research enables the control of protein-film viscoelasticity and emulsion-stability depending on the PAD-structure.
Graphical abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.