A challenging problem in orthopedic practice is represented by bone defects may they occur from trauma, malignancy, infection or congenital disease. Bioactive Glasses have a widely recognized ability to foster the growth of bone cells, and to bond strongly with both hard and soft tissues. Upon implantation, Bioactive Glasses undergoes specific reactions, leading to the formation of an amorphous calcium phosphate or crystalline hydroxyapatite phase on the surface of the glass, which is responsible for its strong bonding with the surrounding tissue. This phenomenon sustains a more rapid healing of bone defects and presents great antibacterial properties. In this paper we report on a clinical study that uses S53P4 Bioactive Glass to successfully treat bone defects and testify of the good compatibility of this material with human tissues.
The use of collagen scaffolds and stem cells for obtaining a tissue-engineering complex has been an important concept in promoting repair and regeneration of the bone tissue. Such units represent important steps in the development of an ideal scaffold-cell complex that would sustain new bone apposition. The aim of our study was to perform a histologic evaluation of the healing of critical-sized bone defects, using a biologic collagen scaffold with adipose-derived mesenchymal stem cells, in comparison to negative controls created in the adjacent bone. We used 16 Wistar rats and according to the study design 2 calvarial bone defects were created in each animal, one was filled with collagen seeded with adipose-derived stem cells and the other one was considered negative control. During the following month, at weekly intervals, the animals were euthanized and the specimens from bone defects were histologically evaluated. The results showed that these scaffolds were highly biocompatible as only moderate inflammation no rejection reactions were observed. Furthermore, the first signs of osseous healing appeared after two weeks accompanied by angiogenesis. Collagen scaffolds seeded with adipose-derived mesenchymal stem cells can be considered a promising treatment option in bone regeneration of large defects.
Abstract-This paper presents a commercial semantic-based system for the Romanian tourism. The Lela system exploits both open linked data from Romanian and international sources, and also proprietary databases in the tourism domain. We present the process of creating the linked data set, based on: i) engineering the LELA Romanian tourism ontology, and ii) populating the ontology by linking open data. The system also provides a natural language interface for the Romanian language. The queries are automatically translated into SPARQL based on a controlled vocabulary derived from the Lela ontology.
Large bone defects are a medical concern as these are often unable to heal spontaneously, based on the host bone repair mechanisms. In their treatment, bone tissue engineering techniques represent a promising approach by providing a guide for osseous regeneration. As bioactive glasses proved to have osteoconductive and osteoinductive properties, the aim of our study was to evaluate by histologic examination, the differences in the healing of critical-sized calvarial bone defects filled with bioactive glass combined with adipose-derived mesenchymal stem cells, compared to negative controls. We used 16 male Wistar rats subjected to a specific protocol based on which 2 calvarial bone defects were created in each animal, one was filled with Bon Alive S53P4 bioactive glass and adipose-derived stem cells and the other one was considered control. At intervals of one week during the following month, the animals were euthanized and the specimens from bone defects were histologically examined and compared. The results showed that this biomaterial was biocompatible and the first signs of osseous healing appeared in the third week. Bone Alive S53P4 bioactive glass could be an excellent bone substitute, reducing the need of bone grafts.
The aim of the study was to identify differences in obesity-related parameters between active sports students and semi-active or sedentary students, differentiated by sex, in order to optimize health. The study sample included 286 students, of which the male experimental sample consisted of 86 active sports students, age X ± SD 21.25 ± 0.32 years; height X ± SD 181.08 ± 3.52 cm; control group consisting of 89 semi-active students aged X ± SD 21.07 ± 0.1.13 years; height X ± SD 182.11 ± 1.32. The female experimental sample includes 57 active sports students, age X ± SD 21.02 ± 0.92 years; height X ± SD 167.48 ± 1.34 cm; the control group includes 54 semi-active students aged X ± SD 21.57 ± 0.1.98 years; height X ± SD 168.42 ± 1.76. The study used a thalliometer, Tanita Health Ware software and Quantum Resonance Magnetic Analyzer equipment to investigate height (cm), Body Mass Index (BMI), muscle mass (kg, %), as well as the obesity analysis report, and componential analysis of body and nourishment. The differences registered between the samples of active and semi-active sports subjects were predominantly statistically significant for p < 0.05. The differences registered between the samples of active and semi-active sports subjects were predominantly statistically significant for p < 0.05. The most important parameters regarding obesity and body composition that registered significant differences between the two male groups were in favor of the group of active athletes: triglyceride content of abnormal coefficient 0.844 (CI95% 0.590–1.099), abnormal lipid metabolism coefficient 0.798 (CI95% 1.091–0.504), obesity degree of body (ODB %) 10.290 (CI95% 6.610–13.970), BMI 2.326 (CI95% 1.527–3.126), body fat (kg) 2.042 (CI95% 0.918–3.166), muscle volume (kg) 2.565 (CI95% 1.100–4.031), Lean body weight (kg) 2.841 (CI95% 5.265–0.418). In the case of female samples, the group of active sportswomen registered the biggest differences compared to the group of students who were significantly active in the parameters: abnormal lipid metabolism coefficient 1.063 (CI95% 1.380–0.746), triglyceride content of abnormal coefficient 0.807 (CI95% 0.437–1.178), obesity degree of body (ODB%) 8.082 (CI95% 2.983–13.181), BMI 2.285 (CI95% 1.247–3.324), body fat (kg) 2.586 (CI95% 0.905–4.267), muscle volume (kg) 2.570 (CI95% 0.154–4.985), lean body weight (kg) 4.118 (CI95% 1.160–7.077). The results of the study directly facilitate the understanding of the complexity of the impact of obesity on multiple parameters of body composition and health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.