BackgroundThe aim of our study was to examine maternal weight gain as well as nutrient intake in pregnancy throughout each trimester compared to current recommendations in a low-risk population and its correlation to birth weight. Additionally, we have investigated the association of maternal nutrition with gestational weight gain and birth weight in an economically unrestricted population.MethodsOur analysis was carried out in a population-based prospective birth cohort in Hamburg, Germany. 200 pregnant women and 197 infants born at term were included in the analysis. Maternal body weight, weight gain throughout gestation, and birth weight, macro- and micronutrients were assessed based on a 24 h dietary recall in each trimester. Our main outcome measures were weight gain, birth weight, and self-reported dietary intake in each trimester in comparison to current recommendations.ResultsOne third of the women were characterized by an elevated pre-pregnancy BMI, 60 % did not comply with current weight gain recommendations. Particularly overweight and obese women gained more weight than recommended. In a multivariate analysis birth weight correlated significantly with maternal BMI (p = 0.020), total weight gain (p = 0.020) and gestational week (p < 0.001). Compared to guidelines mean percentage of energy derived from fat (p = 0.002) and protein (p < 0.001) was significantly higher, whereas carbohydrate (p = 0.033) intake was lower. Mean fiber intake was significantly lower (p < 0.001). Saturated fat and sugar contributed largely to energy consumption. Gestational weight gain correlated significantly with energy (p = 0.027), carbohydrates (p = 0.008), monosaccharides and saccharose (p = 0.006) intake. 98 % of the pregnant women were below the iodine recommendation, while none of the women reached the required folate, vitamin D, and iron intake.ConclusionsDuring gestation appropriate individual advice as to nutrient intake and weight gain seems to be of high priority. Pregnancy should be used as a ‘window of opportunity’ for behavioral changes.
There is still little research examining the relationship between water consumption in school and specific cognitive performance. The aim of this cluster-randomized intervention CogniDROP trial was to investigate the short-term effects of drinking water during the morning on executive functions. The participants were from the 5th and 6th grade of a comprehensive school in Germany (14 classes, n = 250, 61.6% boys). The classes were randomly divided into an intervention group (an education on healthy drinking behavior and a promotion of water consumption) and a control group. A battery of computerized tasks (Switch Task, 2-Back Task, Corsi Block-Tapping Task and Flanker Task) was used to test executive functions. Urine color and thirst were evaluated to check the hydration level. Physical activity over the past 24 h was measured using GT3X ActiGraph. A non-linear relationship was observed between the amount of drinking water and executive performance. Consuming water up to 1000 mL (or up to 50% of Total Water Intake) had benefits during memory tasks. Urine color and number of steps on the study day correlated with water consumed. The results suggest that a water-friendly environment supports school-aged children in adequate water intake resulting in better cognitive performance, especially short-term memory.
Background Intervention studies suggest an influence of breakfast dietary glycemic index (GI) on children’s cognition. The Cognition Intervention Study Dortmund-GI-I study examined whether lunch dietary GI might have short-term effects on selected cognitive parameters. Methods A randomized crossover study was performed at a comprehensive school on 2 test days. One hundred and eighty-nine participants (5th and 6th grade) were randomly assigned to one of the two sequences, medium-high GI (m-hGI) or high-medium GI (h-mGI), following block randomization. In the first period, one group received a dish containing hGI rice (GI: 86) ad libitum, the other mGI rice (GI: 62)—1 week later, in the second period, vice versa. Tonic alertness, task switching, and working memory updating were tested with a computerized test battery 45 min after beginning of lunch break. Treatment effects were estimated using the t test for normally distributed data or the Wilcoxon rank-sum test for non-normally distributed data. Results The crossover approach revealed no effects of lunch dietary GI on the tested cognitive parameters in the early afternoon. However, we determined carryover effects for two parameters, and therefore analyzed only data of the first period. The reaction time of the two-back task (working memory updating) was faster (p = 0.001) and the count of commission errors in the alertness task was lower (p = 0.04) in the hGI group. Conclusion No evidence of short-term effects of lunch dietary GI on cognition of schoolchildren was found. Potential positive effects on single parameters of working memory updating and tonic alertness favoring hGI rice need to be verified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.