A library of ciprofloxacin−nuclease conjugates was designed and synthesized to investigate their potential as catalytic antibiotics. The Cu(II) complexes of the new designer compounds (i) showed excellent in vitro hydrolytic and oxidative DNase activity, (ii) showed good antibacterial activity against both Gramnegative and Gram-positive bacteria, and (iii) proved to be highly potent bacterial DNA gyrase inhibitors via a mechanism that involves stabilization of the fluoroquinolone−topoisomerase− DNA ternary complex. Furthermore, the Cu(II) complexes of two of the new designer compounds were shown to fragment supercoiled plasmid DNA into linear DNA in the presence of DNA gyrase, demonstrating a "proof of concept" in vitro. These ciprofloxacin−nuclease conjugates can therefore serve as models with which to develop next-generation, in vivo functioning catalytic antimicrobials.
The emergence of multidrug‐resistant pathogens that are resistant to the majority of currently available antibiotics is a significant clinical problem. The development of new antibacterial agents and novel approaches is therefore extremely important. We set out to explore the potential of catalytic antibiotics as a new paradigm in antibiotics research. Herein, we describe our pilot study on the design, synthesis, and biological testing of a series of new derivatives of the natural aminoglycoside antibiotic neomycin B for their potential action as catalytic antibiotics. The new derivatives showed significant antibacterial activity against wild‐type bacteria and were especially potent against resistant and pathogenic strains including Pseudomonas aeruginosa and methicillin‐resistant Staphylococcus aureus. Selected compounds displayed RNase activity even though the activity was not as high and specific as we would have expected. On the basis of the observed chemical and biochemical data, along with the comparative molecular dynamics simulations of the prokaryotic rRNA decoding site, we postulate that the rational design of catalytic antibiotics should involve not only their structure but also a comprehensive analysis of the rRNA A‐site dynamics.
New derivatives of aminoglycosides with a side chain 1,2aminoalcohol at the 5" position of ring III were designed, synthesized, and biologically evaluated. The novel lead structure (compound 6), exhibiting substantially enhanced selectivity toward eukaryotic versus prokaryotic ribosome, high readthrough activity, and considerably lower toxicity than the previous lead compounds, was discovered. Balanced readthrough activity and toxicity of 6 were demonstrated in three different nonsense DNAconstructs underlying the genetic diseases, cystic fibrosis and Usher syndrome, and in two different cell lines, baby hamster kidney and human embryonic kidney cells. Molecular dynamics simulations within the A site of the 80S yeast ribosome demonstrated a remarkable kinetic stability of 6, which potentially determines its high readthrough activity.
A library of eight new fluoroquinolone−nuclease conjugates containing a guanidinoethyl or aminoethyl auxiliary pendant on the cyclen moiety was designed and synthesized to investigate their potential for overcoming the general issue of "metallodrug vulnerability" under physiological conditions. The Cu(II) and Co(III) complexes of the new designer compounds were synthesized, and their potential to operate a dynamic, intramolecular cap with DNase activity was explored. The lead Co(III)−cyclen−ciprofloxacin conjugate showed excellent in vitro hydrolytic DNase activity, which was retained in the presence of strong endogenous chelators and exhibited enhanced antibacterial activity relative to the metal-free ligand (in the absence of any adjuvants), thereby demonstrating a "proof of concept" in vitro and ex vivo, respectively, for the dynamic cap hypothesis. The lead conjugate nicked supercoiled plasmid DNA within the fluoroquinolone−gyrase−DNA ternary complex and thereby disabled the function of gyrase, a new mode of action not previously reported for any fluoroquinolone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.