Rapid advances in additive manufacturing have kindled widespread interest in the rational design of metamaterials with unique properties over the past decade. However, many applications require multi-physics metamaterials, where multiple properties are simultaneously optimized. This is challenging since different properties, such as mechanical and mass transport properties, typically impose competing requirements on the nano-/micro-/ meso-architecture of metamaterials. Here, a parametric metamaterial design strategy that enables independent tuning of the effective permeability and elastic properties is proposed. Hyperbolic tiling theory is applied to devise simple templates, based on which triply periodic minimal surfaces (TPMS) are partitioned into hard and soft regions. Through computational analyses, it is demonstrated how the decoration of hard, soft, and void phases within the TPMS substantially enhances their permeability-elasticity property space and offers high tunability in the elastic properties and anisotropy at constant permeability. Also shown is that this permeability-elasticity balance is well captured using simple scaling laws. The proposed concept is demonstrated through multi-material additive manufacturing of representative specimens. The approach, which is generalizable to other designs, offers a route towards multi-physics metamaterials that need to simultaneously carry a load and enable mass transport, such as load-bearing heat exchangers or architected tissue-substituting meta-biomaterials.
In article number 2101373, Sebastien J. P. Callens and co‐workers describe a novel parametric approach to designing biphasic metamaterials based on minimal surfaces, which is demonstrated using multi‐material 3D printing. This approach enables independent tuning of the mechanical and mass transport properties, a feature that is highly relevant in multi‐physics applications, such as in metabiomaterials for tissue engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.