In power plants intended for the disposal of solid household waste, the processes take place at a high temperature. For such installations, nonequilibrium processes are characteristic of a change in the composition of combustion products caused by the final rates of the ongoing chemical reactions. This affects the basic characteristics of the combustion process of municipal solid waste. A mathematical model has been created for calculating the chemically nonequilibrium composition of the fuel. Solid household and industrial waste is a high-energy fuel. It is a high energy fuel. The process of thermal neutralization of solid household waste is considered. An alternative calculation method is presented that allows one to find the composition of combustion products under conditions of nonequilibrium in the process of thermal utilization of solid domestic waste. The data on the composition and properties of solid household waste obtained by the developed method of calculation allow predicting the yield of super Eco toxicants in combustion products. On the basis of the equations of formal chemical kinetics, an alternative was created, which consists in determining the composition of combustion products taking into account the kinetics of chemical reactions. The assumption is introduced that transformations in the gas phase are elementary, one-stage. Various chemical interactions can be represented by a set of elementary stages. The most probable are mono-, biand three molecular chemical reactions. The method allows predicting the yield of Eco toxicants by finding the composition of the fuel combustion products prior to its utilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.