Bending et al. establish a new tool, Timer of cell kinetics and activity (Tocky), revealing the temporal dynamics of cellular activation and differentiation in vivo. The tool analyzes the temporal sequence of molecular processes during cellular differentiation and can classify cells based on the frequency they receive signaling events in vivo.
Understanding the mechanisms of cellular differentiation is challenging because differentiation is initiated by signaling pathways that drive temporally dynamic processes, which are difficult to analyse in vivo. We establish a new Tool, Timer-of-cell-kinetics-and-activity (Tocky [toki], time in Japanese). Tocky uses the Fluorescent Timer protein, which spontaneously shifts its emission spectrum from blue-to-red, in combination with computer algorithms to reveal the dynamics of differentiation in vivo. Using a transcriptional target of T cell receptor (TCR)-signaling, we establish Nr4a3-Tocky to follow downstream effects of TCR signaling. Nr4a3-Tocky reveals the temporal sequence of events during regulatory T cell (Treg) differentiation and shows that persistent TCR signals occur during Treg generation. Remarkably, antigen-specific T cells at the site of autoimmune inflammation also show persistent TCR signaling. In addition, by generating Foxp3-Tocky, we reveal the in vivo dynamics of demethylation of the Foxp3 gene. Thus, Tocky is a Tool for cell biologists to address previously inaccessible questions by directly revealing dynamic processes in vivo.SummaryThe authors establish a new Tool, Timer-of-cell-kinetics-and-activity (Tocky) revealing the temporal dynamics of cellular activation and differentiation in vivo. The tool analyses the temporal sequence of molecular processes during cellular differentiation and identifies cells that receive persistent signals in vivo.
Regulatory T cells (Treg) are negative regulators of the immune response; however, it is poorly understood whether and how Foxp3 transcription is induced and regulated in the periphery during T‐cell responses. Using Foxp3‐Timer of cell kinetics and activity (Tocky) mice, which report real‐time Foxp3 expression, we show that the flux of new Foxp3 expressors and the rate of Foxp3 transcription are increased during inflammation. These persistent dynamics of Foxp3 transcription determine the effector Treg programme and are dependent on a Foxp3 autoregulatory transcriptional circuit. Persistent Foxp3 transcriptional activity controls the expression of coinhibitory molecules, including CTLA‐4 and effector Treg signature genes. Using RNA‐seq, we identify two groups of surface proteins based on their relationship to the temporal dynamics of Foxp3 transcription, and we show proof of principle for the manipulation of Foxp3 dynamics by immunotherapy: new Foxp3 flux is promoted by anti‐TNFRII antibody, and high‐frequency Foxp3 expressors are targeted by anti‐OX40 antibody. Collectively, our study dissects time‐dependent mechanisms behind Foxp3‐driven T‐cell regulation and establishes the Foxp3‐Tocky system as a tool to investigate the mechanisms behind T‐cell immunotherapies.
Regulatory T cells (Treg) are negative regulators of the immune response.Whilst thymic Treg generation is well studied, it is not known whether and how Collectively, our study dissects time-dependent mechanisms behind Foxp3-driven T cell regulation, and establishes the Foxp3-Tocky system as a tool to investigate the mechanisms behind T cell immunotherapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.