Background: Predictive policing and crime analytics with a spatiotemporal focus get increasing attention among a variety of scientific communities and are already being implemented as effective policing tools. The goal of this paper is to provide an overview and evaluation of the state of the art in spatial crime forecasting focusing on study design and technical aspects. Methods: We follow the PRISMA guidelines for reporting this systematic literature review and we analyse 32 papers from 2000 to 2018 that were selected from 786 papers that entered the screening phase and a total of 193 papers that went through the eligibility phase. The eligibility phase included several criteria that were grouped into: (a) the publication type, (b) relevance to research scope, and (c) study characteristics. Results: The most predominant type of forecasting inference is the hotspots (i.e. binary classification) method. Traditional machine learning methods were mostly used, but also kernel density estimation based approaches, and less frequently point process and deep learning approaches. The top measures of evaluation performance are the Prediction Accuracy, followed by the Prediction Accuracy Index, and the F1-Score. Finally, the most common validation approach was the train-test split while other approaches include the cross-validation, the leave one out, and the rolling horizon. Limitations: Current studies often lack a clear reporting of study experiments, feature engineering procedures, and are using inconsistent terminology to address similar problems. Conclusions: There is a remarkable growth in spatial crime forecasting studies as a result of interdisciplinary technical work done by scholars of various backgrounds. These studies address the societal need to understand and combat crime as well as the law enforcement interest in almost real-time prediction. Implications: Although we identified several opportunities and strengths there are also some weaknesses and threats for which we provide suggestions. Future studies should not neglect the juxtaposition of (existing) algorithms, of which the number is constantly increasing (we enlisted 66). To allow comparison and reproducibility of studies we outline the need for a protocol or standardization of spatial forecasting approaches and suggest the reporting of a study's key data items.
Parks are essential public places and play a central role in urban livability. However, traditional methods of investigating their attractiveness, such as questionnaires and in situ observations, are usually time- and resource-consuming, while providing less transferable and only site-specific results. This paper presents an improved methodology of using social media (Twitter) data to extract spatial and temporal patterns of park visits for urban planning purposes, along with the sentiment of the tweets, focusing on frequent Twitter users. We analyzed the spatiotemporal park visiting behavior of more than 4000 users for almost 1700 parks, examining 78,000 tweets in London, UK. The novelty of the research is in the combination of spatial and temporal aspects of Twitter data analysis, applying sentiment and emotion extraction for park visits throughout the whole city. This transferable methodology thereby overcomes many of the limitations of traditional research methods. This study concluded that people tweeted mostly in parks 3–4 km away from their center of activity and they were more positive than elsewhere while doing so. In our analysis, we identified four types of parks based on their visitors’ spatial behavioral characteristics, the sentiment of the tweets, and the temporal distribution of the users, serving as input for further urban planning-related investigations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.