Hemerythrin is proposed as an alternative to hemoglobin-based blood substitutes. In contrast to hemoglobin, hemerythrin exhibits negligible reactivity towards oxidative and nitrosative stress agents (peroxide, nitric oxide, nitrite). Protocols for attachment of polyethylene glycol and glutaraldehyde cross-linking of Hr are described. These derivatizations appear to have favorable effects on O(2) affinity and autoxidation rates for use in blood substitutes. Based on lessons learned from hemoglobin-based blood substitutes, these derivatizations should also help limit extravasation and antigenicity of a hemerythrin-based blood substitute.
A new protocol is described for derivatization of hemoglobin with polyethyleneglycol (PEG) via reaction of the unmodified native hemoglobin with an activated amine-reacting polyethylene glycol derivative which, unlike protocols previously described, leads to formation of a peptide bond between hemoglobin and PEG. Dioxygen binding and peroxide reactivities of the derivatized hemoglobin are examined, and found to be within reasonable limits, with the particular observation that, unlike with a few other derivatization protocols, the dioxygen affinity is slightly lower than that of native Hb. In cell culture tests (human umbilical vein epithelial cells, HUVEC), the derivatization protocol induces no toxic effect. These results show promise towards applicability for production of hemoglobin-based blood substitutes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.