The critical point for successful treatment of cancer is diagnosis at early stages of tumor development. Cancer cell-specific methylated DNA has been found in the blood of cancer patients, indicating that cell-free DNA (cfDNA) circulating in the blood is a convenient tumor-associated DNA marker. Therefore methylated cfDNA can be used as a minimally invasive diagnostic marker. We analysed the concentration of plasma cfDNA and methylation of six tumor suppressor genes in samples of 27 patients with renal cancer and 15 healthy donors as controls. The cfDNA concentrations in samples from cancer patients and healthy donors was measured using two different methods, the SYBR Green I fluorescence test and quantitative real-time PCR. Both methods revealed a statistically significant increase of cfDNA concentrations in cancer patients. Hypermethylation on cfDNA was detected for the LRRC3B (74.1%), APC (51.9%), FHIT (55.6%), and RASSF1 (62.9%) genes in patients with renal cancer. Promoter methylation of VHL and ITGA9 genes was not found on cfDNA. Our results confirmed that the cfDNA level and methylation of CpG islands of RASSF1A, FHIT, and APC genes in blood plasma can be used as noninvasive diagnostic markers of cancer.
WNT7A (wingless-type MMTV integration site family, member 7A) is a known tumor suppressor gene of non-small cell lung carcinomas (NSCLC) and is frequently inactivated due to CpG-island hypermethylation in human cancers. The members of WNT family are involved in cell signaling and play crucial roles in cancer development. In the present work hypermethylation of the WNT7A gene was detected in 66% (29/44) of analyzed clear cell renal cell carcinomas (RCCs) using methyl-specific PCR (MSP). Moreover, bisulfite sequencing confirmed intensive hypermethylation of the 5′-CpG island of the WNT7A gene. Methylation analysis revealed positive correlations between tumor stage, Fuhrman nuclear grade and WNT7A hypermethylation. Additionally, restoration of WNT7A gene expression in the A498 cell line by 5-aza-2′-deoxycytidine treatment confirmed a direct contribution of hypermethylation in silencing of the WNT7A gene. High frequency of loss of heterozygosity (LOH) was demonstrated on chromosome 3p25 in regions surrounding the WNT7A gene. The frequent down-regulation of WNT7A gene expression was detected in 88% (15/17) of clear cell RCCs. We have also shown that the WNT7A gene possesses tumor suppression function by colony-formation and cell proliferation assays in RCC cell lines. In summary, the WNT7A gene is inactivated by genetic/epigenetic alterations in clear cell RCC and demonstrates tumor suppressor properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.