RNA-binding proteins play a key role in shaping gene expression profiles during stress, however, little is known about the dynamic nature of these interactions and how this influences the kinetics of gene expression. To address this, we developed kinetic cross-linking and analysis of cDNAs (χCRAC), an ultraviolet cross-linking method that enabled us to quantitatively measure the dynamics of protein–RNA interactions in vivo on a minute time-scale. Here, using χCRAC we measure the global RNA-binding dynamics of the yeast transcription termination factor Nab3 in response to glucose starvation. These measurements reveal rapid changes in protein–RNA interactions within 1 min following stress imposition. Changes in Nab3 binding are largely independent of alterations in transcription rate during the early stages of stress response, indicating orthogonal transcriptional control mechanisms. We also uncover a function for Nab3 in dampening expression of stress-responsive genes. χCRAC has the potential to greatly enhance our understanding of in vivo dynamics of protein–RNA interactions.
Structure probing coupled with high-throughput sequencing could revolutionize our understanding of the role of RNA structure in regulation of gene expression. Despite recent technological advances, intrinsic noise and high sequence coverage requirements greatly limit the applicability of these techniques. Here we describe a probabilistic modeling pipeline that accounts for biological variability and biases in the data, yielding statistically interpretable scores for the probability of nucleotide modification transcriptome wide. Using two yeast data sets, we demonstrate that our method has increased sensitivity, and thus our pipeline identifies modified regions on many more transcripts than do existing pipelines. Our method also provides confident predictions at much lower sequence coverage levels than those recommended for reliable structural probing. Our results show that statistical modeling extends the scope and potential of transcriptome-wide structure probing experiments.
Mutational signatures are patterns of mutation types, many of which are linked to known mutagenic processes. Signature activity represents the proportion of mutations a signature generates. In cancer, cells may gain advantageous phenotypes through mutation accumulation, causing rapid growth of that subpopulation within the tumour. The presence of many subclones can make cancers harder to treat and have other clinical implications. Reconstructing changes in signature activities can give insight into the evolution of cells within a tumour. Recently, we introduced a new method, TrackSig, to detect changes in signature activities across time from single bulk tumour sample. By design, TrackSig is unable to identify mutation populations with different frequencies but little to no difference in signature activity. Here we present an extension of this method, TrackSigFreq, which enables trajectory reconstruction based on both observed density of mutation frequencies and changes in mutational signature activities. TrackSigFreq preserves the advantages of TrackSig, namely optimal and rapid mutation clustering through segmentation, while extending it so that it can identify distinct mutation populations that share similar signature activities.
Many practical applications require optimization of multiple, computationally expensive, and possibly competing objectives that are well-suited for multi-objective Bayesian optimization (MOBO) procedures. However, for many types of biomedical data, measures of data analysis workflow success are often heuristic and therefore it is not known a priori which objectives are useful. Thus, MOBO methods that return the full Pareto front may be suboptimal in these cases. Here we propose a novel MOBO method that adaptively updates the scalarization function using properties of the posterior of a multi-output Gaussian process surrogate function. This approach selects useful objectives based on a flexible set of desirable criteria, allowing the functional form of each objective to guide optimization. We demonstrate the qualitative behaviour of our method on toy data and perform proof-of-concept analyses of single-cell RNA sequencing and highly multiplexed imaging datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.