Mississippi River Delta wetlands were isolated from river influence due to leveeing in the 1900's. Surface water diversions were primarily designed to manage salinity and maintain marsh vegetation by reintroducing Mississippi River water and nutrients into adjacent wetlands.Phosphorus (P) is a major limiting nutrient that can control productivity, but in excess can contribute to wetland eutrophic conditions and water quality degradation. Most wetland soil characterization assessments consider soil total P, however, this parameter alone cannot describe P bioavailability due to difference in organic and inorganic forms. A soil characterization of the Davis Pond diversion was done in 2007, before full-scale operation began, and in 2018 after 11 years of river loading. The top 10 cm of soil from 140 stations each year were analyzed for physiochemical properties and both organic and inorganic P forms. Mineral content is used to delineate areas of river diversion influence and compare P stocks between hydrologically isolated marsh areas and where effective river diversion reconnection took place. The river diversion resulted in a nearly 100% increase in soil mineral content and 58% increase in bulk density. The dominant source of soil P has changed from organic P to inorganic P in 29% of the wetland area, significantly associated with mineral content of the soil. Inorganic P stocks in diversion influenced areas are 9 times higher than those which remained isolated from riverine materials. The study showed that long-term addition of mineral sediments and inorganic P did not lead to deleterious effects in the wetland. This is the first study in the Mississippi River delta
<p>Sediment, nutrient deprivation and saltwater intrusion, among other factors, are driving widespread organic soil collapse and marsh loss in the Mississippi River Delta. Freshwater wetland diversions were designed to reintroduce Mississippi River water and sediment into the adjacent basins to manage salinity and mitigate land loss. However, there is concern that loading of excess nutrients from the Mississippi River into Barataria Basin wetlands can potentially lead to increased soil OM decomposition, less soil strength or increasing buoyancy and decreased belowground biomass. A baseline study was effected of a 3,145 km<sup>2</sup> area of wetlands and estuaries within Barataria Basin in 2007, in which the spatial variation in plant and soils were described at 140 stations before full scale diversion operations began in 2009. A subsequent spatial survey was conducted in 2018 after 11 years of diversion influence. By resampling the top 20 cm, separated into 0-10 cm and 10-20 cm layers, in 2018 provides an assessment of the status of those soils produced since 2007 and provides context for changing soil conditions. For the 2018 sampling, the soil </p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.