Background Patients with Phenylketonuria (PKU) are exposed to multiple cardiovascular risk factors, but the clinical significance of these abnormalities is yet unknown. The purpose of this study was to characterize the cardiovascular phenotype in adult patients with PKU by clinical and dietary data, measurements of biochemical markers, and non-invasive examination of vascular functions. Results Twenty-three adult patients with PKU (age: 18–47 y; 30.8 ± 8.4 y) and 28 healthy controls (age: 18–47 y; 30.1 ± 9.1 y) were included in this study. PKU patients had significantly higher systolic and diastolic blood pressure, increased resting heart rate and a higher body mass index. Total cholesterol and non-HDL cholesterol levels were significantly increased in PKU patients, whereas plasma levels of HDL cholesterol and its subfraction HDL2 (but not HDL3) were significantly decreased. The inflammatory markers C-reactive protein and serum amyloid A protein and the serum oxidative stress marker malondialdehyde were significantly higher in patients with PKU. Venous occlusion plethysmography showed marked reduction in post-ischemic blood flow and the carotid to femoral pulse wave velocity was significantly increased demonstrating endothelial dysfunction and increased vascular stiffness. Conclusions This study shows that the cardiovascular phenotype of adult PKU patients is characterized by an accumulation of traditional cardiovascular risk factors, high levels of inflammatory and oxidative stress markers, endothelial dysfunction and vascular stiffness. These data indicate the need for early cardiovascular risk reduction in patients with PKU.
ObjectiveLoss-of-function mutations in genes generating reactive oxygen species (ROS), such as NOX1, are associated with IBD. Mechanisms whereby loss of ROS drive IBD are incompletely defined.DesignROS measurements and single-cell transcriptomics were performed on colonoids stratified by NOX1 genotype and TNFα stimulation. Clustering of epithelial cells from human UC (inflamed and uninflamed) scRNASeq was performed. Validation of M cell induction was performed by immunohistochemistry using UEA1 (ulex europaeus agglutin-1 lectin) and in vivo with DSS injury.ResultsTNFα induces ROS production more in NOX1-WT versus NOX1-deficient murine colonoids under a range of Wnt-mediated and Notch-mediated conditions. scRNASeq from inflamed and uninflamed human colitis versus TNFα stimulated, in vitro colonoids defines substantially shared, induced transcription factors; NOX1-deficient colonoids express substantially lower levels of STAT3 (signal transducer and activator of transcription 3), CEBPD (CCAAT enhancer-binding protein delta), DNMT1 (DNA methyltransferase) and HIF1A (hypoxia-inducible factor) baseline. Subclustering unexpectedly showed marked TNFα-mediated induction of M cells (sentinel cells overlying lymphoid aggregates) in NOX1-deficient colonoids. M cell induction by UEA1 staining is rescued with H2O2 and paraquat, defining extra- and intracellular ROS roles in maintenance of LGR5+ stem cells. DSS injury demonstrated GP2 (glycoprotein-2), basal lymphoplasmacytosis and UEA1 induction in NOX1-deficiency. Principal components analyses of M cell genes and decreased DNMT1 RNA velocity correlate with UC inflammation.ConclusionsNOX1 deficiency plus TNFα stimulation contribute to colitis through dysregulation of the stem cell niche and altered cell differentiation, enhancing basal lymphoplasmacytosis. Our findings prioritise ROS modulation for future therapies.
New data suggest how epithelial dysfunction and intestinal dysbiosis contribute to inflammatory bowel disease in patients and in models of XIAP deficiency (see the related Articles by Strigli et al. and Wahida et al.). Numerous innate and adaptive immune mechanisms ensure that cells of the gastrointestinal tract integrate signals of the billions of bacteria at the mucosal surfaces to provide barrier function and host protective immunity without causing immunopathology. Recent advances in
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.