Anopheles darlingi is the principal neotropical malaria vector, responsible for more than a million cases of malaria per year on the American continent. Anopheles darlingi diverged from the African and Asian malaria vectors ∼100 million years ago (mya) and successfully adapted to the New World environment. Here we present an annotated reference A. darlingi genome, sequenced from a wild population of males and females collected in the Brazilian Amazon. A total of 10 481 predicted protein-coding genes were annotated, 72% of which have their closest counterpart in Anopheles gambiae and 21% have highest similarity with other mosquito species. In spite of a long period of divergent evolution, conserved gene synteny was observed between A. darlingi and A. gambiae. More than 10 million single nucleotide polymorphisms and short indels with potential use as genetic markers were identified. Transposable elements correspond to 2.3% of the A. darlingi genome. Genes associated with hematophagy, immunity and insecticide resistance, directly involved in vector–human and vector–parasite interactions, were identified and discussed. This study represents the first effort to sequence the genome of a neotropical malaria vector, and opens a new window through which we can contemplate the evolutionary history of anopheline mosquitoes. It also provides valuable information that may lead to novel strategies to reduce malaria transmission on the South American continent. The A. darlingi genome is accessible at www.labinfo.lncc.br/index.php/anopheles-darlingi.
Sewage sludge and treated wastewater when contaminated with enteric virus and discharged into the environment, could pose a human health risk. The aim of study was to verify the presence and viability of enteric viruses in sewage sludge and treated wastewater at a local sewage plant in Florianopolis city, Brazil. Sewage sludge was concentrated by organic flocculation and polyethylene glycol precipitation and wastewater by electronegative membrane filtration and ultrafiltration by Centriprep Concentrator. Adenovirus (AdV), hepatitis A virus (HAV), and Rotavirus (RV) were examined for all samples for 12 months and Poliovirus (PV) was also tested for in sewage sludge samples. AdV was the most prevalent in both kind of samples, followed by RV, PV (in sludge) and HAV. Viral viability by cell culture (ICC-PCR) was: AdV: 100%, HAV: 16.7%, PV: 91.7%, RV: 25% in sludge and AdV: 66.6%, HAV: 66.6% and RV: 0% in wastewater. IFA for AdV in sludge ranged from 70 to 300 FFU/ml. QPCR for AdV ranged from 4.6 x 10(4) to 1.2 x 10(6) and from 50 to 1.3 x 10(4) gc/ml in sludge and wastewater, respectively. HAV quantification in sludge ranged from 3.1 x 10(2) to 5.4 x 10(2) gc/ml. In conclusion, it was possible to correlate presence and viability of enteric viruses in the environmental samples analyzed.
Proinflammatory cytokines are critical mediators that control Mycobacterium tuberculosis (Mtb) growth during active tuberculosis (ATB). To further inhibit bacterial proliferation in diseased individuals, drug inhibitors of cell wall synthesis such as isoniazid (INH) areemployed. However, whether INH presents an indirect effect on bacterial growth by regulating host cytokines during ATB is not well known. To examine this hypothesis, we used an in vitro human granuloma system generated with primary leukocytes from healthy donors adapted to model ATB. Intense Mtb proliferation in cell cultures was associated with monocyte/macrophage activation and secretion of IL-1β and TNF. Treatment with INH significantly reduced Mtb survival, but altered neither T-cell-mediated Mtb killing, nor production of IL-1β and TNF. However, blockade of both IL-1R1 and TNF signaling rescued INH-induced killing, suggesting synergistic roles of these cytokines in mediating control of Mtb proliferation. Additionally, mycobacterial killing by INH was highly dependent upon drug activation by the pathogen catalase-peroxidase KatG and involved a host PI3K-dependent pathway. Finally, experiments using coinfected (KatG-mutated and H37Rv strains) cells suggested that active INH does not directly enhance host-mediated killing of Mtb. Our results thus indicate that Mtb-stimulated host IL-1 and TNF have potential roles in TB chemotherapy.Keywords: Human r IL-1 r TNF r Isoniazid r Leukocytes r Mycobacterium tuberculosis Additional supporting information may be found in the online version of this article at the publisher's web-site IntroductionUpon Mycobacterium tuberculosis (Mtb) exposure, it is estimated that 5-10% of human subjects will develop active tuberculosis Correspondence: Prof. André Báfica e-mail: andre.bafica@ufsc.br (TB) [1], which is characterized by intense pathogen proliferation associated with cellular activation and cell death. Cellular structures known as necrotic granulomas may promote bacterial dissemination and enhance Mtb transmission [2,3]. On the other hand, counter balance is supported by host recognition of Mtb, which induces cytokines such as IL-1β and TNF [4,5], two potent inflammatory mediators that suppress Mtb growth [4,6]. It has C 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.eji-journal.eu Eur. J. Immunol. 2016. 46: 1936-1947 Immunity to infection 1937 been shown that these cytokines regulate intracellular bacterial growth in human macrophages, whether by recruitment of antimicrobial effector molecules [7] or induction of apoptotic cell death [8]. In conjunction with 9], IL-1β, and TNF can provide signals to help differentiation and antigen presentation by macrophages [6,10,11]. Moreover, the adverse outcome of latent TB reactivation observed in clinical trials with anti-TNF therapies, additionally confirmed the essential role of TNF for controlling Mtb growth in humans [12]. In addition to antibiotics, which are major therapeutic tools to promote further suppression of mycobacterial growth [13], host-targeted i...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.