Biomonitoring is one of the tools used to assess the mutagenic potential of the atmosphere. In this study, the mutagenicity of Tradescantia pallida, a species of plant largely present in urban environments, was investigated. The objectives of this study was to estimate the mutagenic potential of vehicular flow through the TRAD-MCN bioassay in cities located at different altitudes in the southwest mesoregion of Mato Grosso do Sul, Brazil, to infer possible abiotic agents that may contribute to the effects of atmospheric pollutants, and finally to map the cities with greater risks to the health of the local population. To achieve these objectives, the Tradescantia-micronucleus test was performed on young buds of T. pallida collected between August 2015 and August 2016 in nine cities of Mato Grosso do Sul. These buds were exposed to traffic flows of various intensities. The data collected consisted of measurements of meteorological parameters and vehicular traffic counts for each city. The variables considered were: mean ambient temperature; micronuclei frequency; vehicular flow; altitude; relative humidity; pluviosity. The application of the Trad-MCN bioassay, with the consideration of environmental variables and altitudes, and the use of the Kernel interpolation technique, allowed us to map the areas with significant pollution risks to the population. The highest frequency of exposure to mutagens occurred in the cities with the highest vehicular traffic intensity. The average ambient temperature failed to show a linear association with the frequency of the micronuclei in the samples analyzed (r = 0.11). A positive correlation was observed between micronuclei frequency and vehicular flow, (r = 0.67; p ≤ 0.001%) and between micronuclei frequency and altitude (r = 0.24; p ≤ 0.05). A negative correlation was found between relative humidity and micronuclei frequency (r = -0.19; p ≤ 0.05%). Thus, higher micronuclei frequency tended to be present in locations with low relative humidity and high altitudes and vehicular flow.
The present study aims to relate the micronucleus frequency in Tradescantia pallida to environmental factors and cardiorespiratory diseases to infer the effect of air pollution. The number of hospitalizations, diseases cases, frequency of micronuclei in plants, environmental variables, altitude, and vehicle traffic in cities of Mato Grosso do Sul were evaluated due to the high flow that surrounds agribusiness. The frequency of micronuclei decreased with the increase in relative humidity, while the altitude did not influence the mutagenicity or genotoxicity of the evaluated plants. The municipalities with micronucleus frequencies above 200 had the highest number of vehicle and cardiorespiratory diseases. Biomonitoring data obtained in cities throughout the year indicate that the number of cardiorespiratory diseases was probably due to vehicular pollution, which is evidenced by the increased frequency of micronuclei in T. pallida.
The feeding activity of Plutella xylostella in brassica crops can lead to large losses; thus, pesticides that prevent feeding during the larval stage or prevent the metamorphosis of this insect can be used for its control. In this study, the effects of two types of aqueous extracts of Tradescantia pallida on the different life stage of P. xylostella cycle were tested; neither of the two aqueous extracts, which were obtained by infusion and maceration, had been tested against P. xylostella. The biological variables evaluated were larval and pupal duration and viability, pupal weight, sex ratio, longevity of females, fecundity, fertility and oviposition period. There was no significant difference in the duration of the larval phase of P. xylostella between the bioassay treatments; however, larval viability was lower when the individuals were exposed to both types of T. pallida extracts. Reduced pupal viability was observed among the individuals treated with the application of the extracts. Treatment with the aqueous extract obtained by infusion caused the lowest pupal weight, fecundity, and fertility and longevity among females. The results obtained in this study allow us to propose the bioextract as an alternative for pest management, emphasizing the technique for small producers and/or organic.
Air pollution substantially damages ecosystems and public health and is one of the major challenges for air quality monitoring management. The use of the plant bioindicator Tradescantia pallida (Rose) D. R. Hunt has shown excellent results in terms of determining the effect of airborne contaminants in urban environments, complementing conventional methods. The present study seeks to determine the air quality in the Ivinhema Valley, MS, using the variation in MCN frequency and stomatal indices of T. pallida as air pollution biomarkers. The biomonitoring tests were performed monthly by collecting floral and leaf buds during the summer, autumn, winter, and spring of 2021 in Angélica, Ivinhema, and Nova Andradina. The stomatal leaf density, influence of vehicle flow, and environmental variables such as altitude, temperature (°C), relative humidity (RH), and rainfall in the three cities under study with different urban vehicle intensities were analyzed. A significant increase in MCN was observed for the cities of Nova Andradina and Ivinhema in summer and spring. On the other hand, the city of Angélica had a low frequency of MCN throughout the experimental period. A seasonal and spatial pattern was also observed for the stomatal index, with significantly higher values for the city of Angélica in autumn and winter. Our data allowed observing that the MCN showed the greatest association with vehicular flow. The mutagenic effects observed in T. pallida, through the MCN frequency, constituted an important biomarker of air pollution, explained mainly by the relationship with the flow of vehicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.