Eucalyptus stands growth depends on genotype, age, quality of the local soil and silvicultural treatment. Environmental factors, mainly the water availability to plants throughout the years, temperature and solar radiation are relevant to production capacity. The models used in Brazil to stimulate the future production of forestry stands are those that estimate growth and/or production according to age, basal area and local index. One of the possible approaches to do so is the use of procedural models (ecophysiological) such as the 3PG and the artificial neural network. The current study has the aim to construct, validate and apply an artificial neural model to predict the production and growth of eucalyptus stands in Minas Gerais, Brazil. The herein used data resulted from continuous forestall inventory plots conducted in eucalyptus stands in the North, Center and South of the state. The edaphic and climatic information added to the IFC data were used to train neural nets on predicting growth and production in the state. A neural network, lacking inventory variables, was also trained to extrapolate the mean productivity in the entire state of Minas Gerais due to the physiographic, edaphic and climatic conditions. The neural network efficiency was attested by the great accuracy of productivity forecasts. The generated productivity maps are indicated for studies on the expansion of eucalyptus cultivation in the state. The applied methodology is simple and efficiently inapplicable to different forestry cultures in other states or countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.