Background: Both supraphysiological and subphysiological testosterone levels are associated with increased cardiovascular risk. Testosterone consumption at supraphysiological doses has been linked to increased blood pressure, left ventricular hypertrophy, vascular dysfunction, and increased levels of inflammatory markers. Activation of the NLRP3 inflammasome contributes to the production of proinflammatory cytokines, leading to cardiovascular dysfunction. We hypothesized that supraphysiological levels of testosterone, via generation of mitochondrial reactive oxygen species (mROS), activates the NLRP3 inflammasome and promotes vascular dysfunction. Methods: Male, 12 week-old C57Bl/6J (WT) and NLRP3 knockout (NLRP3 −/−) mice were used. Mice were treated with testosterone propionate [TP (10 mg/kg) in vivo] or vehicle for 30 days. In addition, vessels were incubated with testosterone [Testo (10 −6 M, 2 h) in vitro]. Testosterone levels, blood pressure, vascular function (thoracic aortic rings), pro-caspase-1/caspase-1 and interleukin-1β (IL-1β) expression, and generation of reactive oxygen species were determined. Results: Testosterone increased contractile responses and reduced endothelium-dependent vasodilation, both in vivo and in vitro. These effects were not observed in arteries from NLRP3 −/− mice. Aortas of TP-treated WT mice (in vivo), as well as aortas from WT mice incubated with testo (in vitro), exhibited increased mROS levels and increased caspase-1 and IL-1β expression. These effects were not observed in arteries from NLRP3 −/− mice. Flutamide [Flu, 10 −5 M, androgen receptor (AR) antagonist], carbonyl cyanide m-chlorophenyl hydrazone (CCCP, 10 −6 M, mitochondrial uncoupler) and MCC950 (MCC950, 10 −6 M, a NLRP3 receptor inhibitor) prevented testosterone-induced mROS generation. Conclusion: Supraphysiological levels of testosterone induce vascular dysfunction via mROS generation and NLRP3 inflammasome activation. These events may contribute to increased cardiovascular risk.
Arterial hypertension represents a serious public health problem, being a major cause of morbidity and mortality worldwide. The availability of many antihypertensive therapeutic strategies still fails to adequately treat around 20% of hypertensive patients, who are considered resistant to conventional treatment. In the pathogenesis of hypertension, immune system mechanisms are activated and both the innate and adaptive immune responses play a crucial role. However, what, when and how the immune system is triggered during hypertension development is still largely undefined. In this context, this review highlights scientific advances in the manipulation of the immune system in order to attenuate hypertension and end-organ damage. Here, we discuss the potential use of immunosuppressants and immunomodulators as pharmacological tools to control the activation of the immune system, by non-specific and specific mechanisms, to treat hypertension and improve end-organ damage. Nevertheless, more clinical trials should be performed with these drugs to establish their therapeutic efficacy, safety and risk-benefit ratio in hypertensive conditions.
High levels of aldosterone (Aldo) trigger oxidative stress and vascular dysfunction independent of effects on blood pressure. We sought to determine whether Aldo disrupts Nrf2 signaling, the main transcriptional factor involved in antioxidant responses that aggravate cell injury. Thoracic aorta from male C57Bl/6J mice and cultured human endothelial cells (EA.hy926) were stimulated with Aldo (100 nM) in the presence of tiron [reactive oxygen species (ROS) scavenger, eplerenone [mineralocorticoid receptor (MR) antagonist], and L-sulforaphane (SFN; Nrf2 activator). Thoracic aortas were also isolated from mice infused with Aldo (600 μg/kg per day) for 14 days. Aldo decreased endothelium-dependent vasorelaxation and increased ROS generation, effects prevented by tiron and MR blockade. Pharmacological activation of Nrf2 with SFN abrogated Aldo-induced vascular dysfunction and ROS generation. In EA.hy926 cells, Aldo increased ROS generation, which was prevented by eplerenone, tiron, and SFN. At short times, Aldo-induced ROS generation was linked to increased Nrf2 activation. However, after three hours, Aldo decreased the nuclear accumulation of Nrf2. Increased Keap1 protein expression, but not activation of p38 MAPK, was linked to Aldo-induced reduced Nrf2 activity. Arteries from Aldo-infused mice also exhibited decreased nuclear Nrf2 and increased Keap1 expression. Our findings suggest that Aldo reduces vascular Nrf2 transcriptional activity by Keap1-dependent mechanisms, contributing to mineralocorticoid-induced vascular dysfunction.
Background Patients with rheumatoid arthritis (RA) experience 50% more risk of mortality attributed to cardiovascular disease (CVD). PVAT dysfunction, which leads to vascular dysfunction, is driven by increased proinflammatory adipokines, and overactivation of immune cells. The proinflammatory adipokine resistin modulates vascular function, and circulating, synovial and serum resistin concentrations are increased in RA patients. We hypothesized that resistin causes PVAT dysfunction, inflammation and macrophage infiltration in a RA experimental model. Methods Antigen‐induced arthritis (AIA) was induced in 12 weeks‐old C57BL/6 male mice. AIA immunized mice received mBSA (intraarterial injection, 10 µg in10 µl PBS/week) or PBS (10 µl) for 5 weeks. Disease activity was determined based on immune cells profile in lymph nodes, by flow cytometry, and measurement of the mediolateral knee joint diameter. Thoracic aorta, with or without PVAT, were isolated after five weeks of AIA onset for functional, cellular, and molecular assays. Data are represented as mean and standard error, and student´s T test (p<0.05) was used for statistical analysis. All the experiments were approved by the Ethics Committee on Animal Research of the FMRP,USP (protocol nº 15/2020). Results Inguinal lymph nodes of AIA showed increased CD4+/IL‐17 cells compared to control [(%) AIA: 10.4 ± 1.06 vs. CT 1.8 ± 1.06, n=6] and the mediolateral knee diameter was increased in AIA compared to control mice [(mm) AIA 4.38 ± 0.06 vs. CT 3.50 ± 0.04, n=6]. Aorta from AIA mice had a dysfunctional PVAT, decreased phenylephrine (Pe) maximum responses (Emax) and no changes in Pe logEC50 compared to CT [Emax (mN): CT ‐PVAT 10.6 ± 0.3 vs. CT +PVAT 8.7 ± 0.2; AIA ‐PVAT 6.8 ± 0.3 vs. CT +PVAT 7.0 ± 0.2, n=6‐8]. 40 ng/ml of resistin for 4 hours compromised aortic PVAT function [Emax (mN): WT–PVAT + Resistin = 5,8 ± 0,1 vs. WT+PVAT + Resistin = 6,0 ± 0,1; CT ‐PVAT= 10,6 ± 0,3 vs. CT +PVAT 8,7 ± 0,2, n=7‐8]. Resistin concentrations were increased in the PVAT, plasma, and knee of AIA mice vs. control [(pg/ml) Serum: AIA 899.2 ± 11 vs. CT 837.9 ± 18; PVAT: AIA 217.0 ± 24 vs. CT 121 ± 18; Knee: AIA 28.3 ± 1.7 vs. CT 19.5 ± 1.1, n=4‐8). mRNA gene markers of type 1 (M1) macrophages, including monocyte chemoattractant protein‐1 (CCL2), interleukin‐1beta (IL‐1b), inducible nitric oxide synthase (iNOS), and tumor necrosis alpha (TNFα) were increased in AIA PVAT [(‐∆∆ct) CCL2: AIA 2.6 ± 0.3 vs. CT 0.82 ± 0.10; iNOS: AIA 2,5± 0,7 vs. CT 0,6 ± 0,1; IL‐1b: AIA 2.0 ± 0.4 vs. CT 1.0; TNFα: AIA 1,2 ± 0,1 vs. CT 0,5 ± 0,0; n=5‐8, 2]. mRNA gene markers of type 2 macrophages (M2) such as resistin‐like molecule alpha (Retnla), L‐arginase (Arg1), Mannose Receptor C‐Type 1 (Mrc1) was increased in PVAT from AIA mice vs. control [(‐∆∆ct) Arg1: AIA 3,4 ± 0,6 vs. CT 0,8 ± 0,1; Retna AIA 2,0 ± 0,6 vs. CT 1,0 ± 0,2; n=5‐7, 2]. Flow cytometry analysis confirmed increased M1 and M2 markers in the PVAT of AIA mice [(% of cells) M1:F4/80+CD11b+:AIA 11,8 ± 1,6 vs. Sham 6,0 vs. 1,1; M2: CD206+CD11b+ :AIA...
Objetivo: Analisar o perfil farmacoterapêutico e fatores associados a saúde de idosos polimedicados atendidos em uma Unidade Básica de Saúde (UBS) e que frequentam um Centro de Convivência do Idoso (CCI) no município de Sinop - MT. Métodos: Estudo quantitativo, com 30 idosos, 15 de cada local citado. Os dados foram obtidos por aplicação de formulários específicos durante 5 meses. Os medicamentos foram classificados segundo o Anatomical Therapeutic and Chemical Classification. Os medicamentos inapropriados (MI) para idosos classificados pelo critério de Beers-Fick. Resultados: Ocorreu maior utilização de medicamentos da classe do sistema cardiovascular (SC) (38,7%) e do sistema nervoso central (SNC) (20,7%) na UBS, enquanto os do CCI utilizaram 39,7% dos medicamentos para SC e para o trato alimentar e metabolismo (TAM) (20,4%). Porém, os idosos da UBS obtiveram maior número de MI (14,4%) comparado ao CCI (12,0%), com um maior número de possíveis interações medicamentosas (IM) (95) versus (46) do CCI. Conclusão: O perfil farmacoterapêutico diferiu entre os grupos estudados, prevalecendo classes do SC, SNC e TAM. O uso de polifarmácia foi comum, com porcentual de MI de 12, 9% e 14,4%, e maior quantidade de IM moderadas. A atenção farmacêutica mostra-se crucial para melhora da farmacoterapia em idosos polimedicados.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.