We study multiplayer turn-based games played on a finite directed graph such that each player aims at satisfying an ω-regular Boolean objective. Instead of the well-known notions of Nash equilibrium (NE) and subgame perfect equilibrium (SPE), we focus on the recent notion of weak subgame perfect equilibrium (weak SPE), a refinement of SPE. In this setting, players who deviate can only use the subclass of strategies that differ from the original one on a finite number of histories. We are interested in the constrained existence problem for weak SPEs. We provide a complete characterization of the computational complexity of this problem: it is P-complete for Explicit Muller objectives, NP-complete for Co-Büchi, Parity, Muller, Rabin, and Streett objectives, and PSPACE-complete for Reachability and Safety objectives (we only prove NP-membership for Büchi objectives). We also show that the constrained existence problem is fixed parameter tractable and is polynomial when the number of players is fixed. All these results are based on a fine analysis of a fixpoint algorithm that computes the set of possible payoff profiles underlying weak SPEs.
We study multiplayer reachability games played on a finite directed graph equipped with target sets, one for each player. In those reachability games, it is known that there always exists a Nash equilibrium (NE) and a subgame perfect equilibrium (SPE). But sometimes several equilibria may coexist such that in one equilibrium no player reaches his target set whereas in another one several players reach it. It is thus very natural to identify "relevant" equilibria. In this paper, we consider different notions of relevant equilibria including Pareto optimal equilibria and equilibria with high social welfare. We provide complexity results for various related decision problems.
Network congestion games are a convenient model for reasoning about routing problems in a network: agents have to move from a source to a target vertex while avoiding congestion, measured as a cost depending on the number of players using the same link. Network congestion games have been extensively studied over the last 40 years, while their extension with timing constraints were considered more recently. Most of the results on network congestion games consider blind strategies: they are static, and do not adapt to the strategies selected by the other players. We extend the recent results of [Bertrand et al., Dynamic network congestion games. FSTTCS'20] to timed network congestion games, in which the availability of the edges depend on (discrete) time. We prove that computing Nash equilibria satisfying some constraint on the total cost (and in particular, computing the best and worst Nash equilibria), and computing the social optimum, can be achieved in exponential space. The social optimum can be computed in polynomial space if all players have the same source and target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.