BackgroundMammary tumors are among the most frequent neoplasms in female dogs, but the strategies employed in animal treatment are limited. In human medicine, hormone manipulation is used in cancer therapy. Tamoxifen citrate is a selective inhibitor of oestrogen receptors and exerts a potent anti-oestrogen effect on the mammary gland. The aim of this study was to evaluate the adverse effects when exposing healthy female dogs to tamoxifen.MethodsTamoxifen was administered for 120 days at a dose of 0.5 or 0.8 mg/kg/day to either intact or spayed female dogs. The effects were assessed through clinical examination, haematology, serum biochemistry, ophthalmology and bone marrow aspirate examination. Ovariohysterectomy was performed and the uterus examined by histopathology.ResultsVulva oedema and purulent vaginal discharge developed with 10 days of tamoxifen exposure in all groups. Pyometra was diagnosed after around 90 days of exposure in intact females with frequencies increasing during the following 30 days of exposure. Up to 50% of dogs within the groups developed retinitis but none of the dogs had signs of reduced visual acuity. The prevalence of retinitis in each group was similar after 120 days of exposure. Haematological, biochemical and bone marrow changes were not observed. Due to the high risk of developing pyometra after prolonged exposure to tamoxifen, only spayed animals should be given this medication.ConclusionsA dose of 0.8 mg tamoxifen/kg body weight/day is recommended when treating tamoxifen-responsive canine mammary tumors. Due to the high risk of developing pyometra, ovariohysterectomy is recommended.
We described the selection of a novel nucleic acid antibody-like prostate cancer (PCa) that specifically binds to the single-stranded DNA molecule from a 277-nt fragment that may have been partially paired and bound to the PCA3 RNA conformational structure. PCA3-277 aptamer ligands were obtained, and the best binding molecule, named CG3, was synthesized for validation. Aiming to prove its diagnostic utility, we used an apta-qPCR assay with CG3-aptamer conjugated to magnetic beads to capture PCA3 transcripts, which were amplified 97-fold and 7-fold higher than conventional qPCR in blood and tissue, respectively. Histopathologic analysis of 161 prostate biopsies arranged in a TMA and marked with biotin-labeled CG3-aptamer showed moderate staining in both cytoplasm and nucleus of PCa samples; in contrast, benign prostatic hyperplasia (BPH) samples presented strong nuclear staining (78% of the cases). No staining was observed in stromal cells. In addition, using an apta-qPCR, we demonstrated that CG3-aptamer specifically recognizes the conformational PCA3-277 molecule and at least three other transcript variants, indicating that long non-coding RNA (lncRNA) is processed after transcription. We suggest that CG3-aptamer may be a useful PCa diagnostic tool. In addition, this molecule may be used in drug design and drug delivery for PCa therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.