Prostate cancer is the most frequently diagnosed male visceral cancer and the second leading cause of cancer death in the United States. Standard tests such as prostate-specific antigen (PSA) measurement have poor specificity (33%) resulting in a high number of false positive reports. Consequently there is a need for new biomarkers to address this problem. The MIL-38 antibody was first described nearly thirty years ago, however, until now, the identification of the target antigen remained elusive. By a series of molecular techniques and mass spectrometry, the MIL-38 antigen was identified to be the highly glycosylated proteoglycan Glypican-1 (GPC-1). This protein is present in two forms; a membrane bound core protein of 55-60 kDa and secreted soluble forms of 40 kDa and 52 kDa. GPC-1 identification was confirmed by immuno-precipitation, western blots and ELISA. An ELISA platform is currently being developed to assess the levels of GPC-1 in normal, benign prostatic hyperplasia (BPH) and prostate cancer patients to determine whether secreted GPC-1 may represent a clinically relevant biomarker for prostate cancer diagnosis.
While measurement of serum prostate specific antigen (PSA) is an important screening tool for prostate cancer, new biomarkers are necessary for better discrimination between presence and absence of disease. The MIL-38 monoclonal antibody is specific for the membrane glycoprotein glypican 1 (GPC-1) and binds to prostate cancer tissue. Urine is known to be a source of cellular material. Thus, we hypothesized that detection of GPC-1 in urine cellular material may identify individuals with prostate cancer. Urine samples from patients with prostate cancer, benign prostatic hyperplasia (BPH), or normal controls were collected and cell sediments prepared. GPC-1-positive cells were detected using a MIL-38 immunofluorescence assay (IFA) and samples were classed positive or negative for GPC-1 expressing cells. Assay sensitivity and specificity, stratified by PSA, was reported. A total of 125 patient samples were analyzed (N = 41 prostate cancer; N = 37 BPH; N = 47 normal controls). The use of MIL-38 to detect GPC-1 by IFA discriminated between prostate cancer and BPH urine specimens with a sensitivity and specificity of 71% and 76%, respectively. Assay specificity increased with increasing PSA, with the highest specificity (89%) for patients with PSA ≥4 ng/ml. At lower PSA (<2 ng/ml) specificity decreased, as evidenced by a greater number of false positives in this concentration range. The odds ratio (OR) and 95% confidence intervals (CIs) for GPC-1-positive cells in patients with prostate cancer, adjusted for PSA, was greatest at the lowest serum PSA (<2 ng/ml; OR = 13.4; 95% CI: 4.0–44.7) compared with no adjustment for PSA (OR = 6.4; 95% CI: 2.8–14.9). The use of MIL-38 for detection of GPC-1 may be a useful tool for detection of prostate cancer.
indeterminate PSA results who would be candidates for initial biopsy. The assay should result in a 27% reduction of prostate needle biopsies while missing only 5% of higher grade >/¼ 4+3 cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.