The search for advanced optical materials, in particular, materials with nonlinear optical responses, has, in the last years, experienced substantial growth due to their vast applications in the photonics field. One of those applications is ultra-fast optical frequency conversion, in the optics communications field. Organic compounds have emerged as promising candidates for raw materials to develop nonlinear optical devices, such as optical converters, due to their intrinsic ultra-fast electronic responses. Also, the easy tailoring of organic molecular structures makes organic materials much more appealing than the inorganic ones. In this work, we have performed a linear and nonlinear optical characterization of a set of dibenzylideneacetone derivatives. The nonlinear optical responses investigated correspond to second- and third-order nonlinear processes, namely, first electronic molecular hyperpolarizability and two-photon absorption cross-section, respectively. The value of the first electronic molecular hyperpolarizability, up to 52 cm4·statvolt−1, could be considered a robust value when compared to the short-sized π-electron backbone length of the studied compounds. Such results suggest that these compounds exhibit the potential to be used as optical frequency converters. Quantum chemical calculations were used to predict the theoretical value of the first molecular hyperpolarizability, as well as to simulate the one- and two-photon absorption spectra for all compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.