Large granular lymphocyte (LGL) leukemia has been recognized by the World Health Organization classifications amongst mature T-cell and natural killer (NK) cell neoplasms. There are 3 categories: chronic T-cell leukemia and NK-cell lymphocytosis, which are similarly indolent diseases characterized by cytopenias and autoimmune conditions as opposed to aggressive NK-cell LGL leukemia. Clonal LGL expansion arise from chronic antigenic stimulation, which promotes dysregulation of apoptosis, mainly due to constitutive activation of survival pathways including Jak/Stat, MapK, phosphatidylinositol 3-kinase–Akt, Ras–Raf-1, MEK1/extracellular signal-regulated kinase, sphingolipid, and nuclear factor-κB. Socs3 downregulation may also contribute to Stat3 activation. Interleukin 15 plays a key role in activation of leukemic LGL. Several somatic mutations including Stat3, Stat5b, and tumor necrosis factor alpha-induced protein 3 have been demonstrated recently in LGL leukemia. Because these mutations are present in less than half of the patients, they cannot completely explain LGL leukemogenesis. A better mechanistic understanding of leukemic LGL survival will allow future consideration of a more targeted therapeutic approach than the current practice of immunosuppressive therapy.
Large granular lymphocyte (LGL) leukemia has been recognized in the World Health Organization classifications among mature T cell and natural killer cell neoplasms and is divided into three categories. Chronic T cell leukemia and natural killer cell lymphocytosis can be considered as a similar spectrum of an indolent disease characterized by cytopenias and autoimmune conditions. The last category, aggressive natural killer cell LGL leukemia is very rare, related to Epstein-Barr virus, and seen mainly in young Asian people. Clonal LGL expansion arises from chronic antigenic stimulation sustained by interleukin-15 and platelet-derived growth factor cytokine signal. Those leukemic cells are resistant to apoptosis, mainly because of constitutive activation of survival pathways including Jak/Stat, MapK, Pi3k-Akt, RasRaf-1, MEK1/ERK, sphingolipid, and NFκB. Stat3 constitutive activation is the hallmark of this lymphoproliferative disorder. Socs3 is downregulated, but no mutation could be found to explain this status. However, several somatic mutations, including Stat3, Stat5b, and tumor necrosis factor alpha-induced protein 3, have been demonstrated recently in LGL leukemia; they are identified in half of patients and cannot explain by themselves LGL leukemogenesis. Recurrent infections as a result of chronic neutropenia, anemia, and autoimmune disorders are the main complications related to LGL leukemia. Despite an indolent presentation, 10% of patients die, mainly because of infectious complications. Current treatments are based on immunosuppressive therapies. A better mechanistic understanding of LGL leukemia will allow future consideration of a personalized therapeutic approach perhaps based on Jak/Stat inhibitors, which may offer better results than current immunosuppressive therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.