The number of carbon atoms and/or ester/polyether groups in spacer chains may influence the interaction of functional monomers with calcium and dentin. The present study assessed the chemical interaction and bond strength of 5 standard-synthesized phosphoric-acid ester functional monomers with different spacer chain characteristics, by atomic absorption spectroscopy (AAS), ATR-FTIR, thin-film x-ray diffraction (TF-XRD), scanning electron microscopy (SEM), and microtensile bond strength (μTBS). The tested functional monomers were 2-MEP (two-carbon spacer chain), 10-MDP (10-carbon), 12-MDDP (12-carbon), MTEP (more hydrophilic polyether spacer chain), and CAP-P (intermediate hydrophilicity ester spacer). The intensity of monomer-calcium salt formation measured by AAS differed in the order of 12-MDDP=10-MDP>CAP-P>MTEP>2-MEP. FTIR and SEM analyses of monomer-treated dentin surfaces showed resistance to rinsing for all monomer-dentin bonds, except with 2-MEP. TF-XRD confirmed the weaker interaction of 2-MEP. Highest µTBS was observed for 12-MDDP and 10-MDP. A shorter spacer chain (2-MEP) of phosphate functional monomers induced formation of unstable monomer-calcium salts, and lower chemical interaction and dentin bond strength. The presence of ester or ether groups within longer spacer carbon chains (CAP-P and MTEP) may affect the hydrophilicity, μTBS, and also the formation of monomer-calcium salts.
This study evaluated the shear bond strength (SBS) of self-adhesive resin cements (SARCs) to dentin and their physical-chemical properties. Five commercial SARCs were evaluated [SmartCem®2 -DENTSPLY (SC2); BisCem® -Bisco (BC); SeT PP® − SDI (SeT); Relyx U100® -3M ESPE (U100) and YCEM® SA -Yller (YCEM)]. The SARCs were evaluated for SBS to dentin (n = 10) after 24 h, 6 months, and 12 months. The dentin demineralization caused by acidic monomers was observed by SEM, and pH-neutralization of eluate was observed for 24 h. Degree of conversion (DC), rate of polymerization (Rp), flexural strength (FS), and elastic modulus (E) were evaluated. Immediate SBS of SC2, SET, U100, and YCEM were statistically higher than that of BC (p < 0.001). After 12 months, all SARCs showed reduced SBS values and U100 showed values similar to those of SET and YCEM, and higher than those of BC and SC2 (p = 0.001). Demineralization pattern of SARCs was similar. At 24h, all SARCs showed no differences in the pH-value, except BC and U100 (p < 0.001). YCEM showed the highest Rp. U100, YCEM, and SC2 showed statistically higher FS (p<0.001) and E (p < 0.001) when compared with SET and BC. U100 and YCEM showed the best long-term bonding irrespective of the storage period. A significant reduction in SBS was found for all groups after 12 months. SBS was not shown to be correlated with physical-chemical properties, and appeared to be material-dependent. The polymerization profile suggested that an increased time of light activation, longer than that recommended by manufacturers, would be necessary to optimize DC of SARCs.
Silva FP, Faria-e-Silva AL, Moraes RR, Ogliari AO, Reis GR, Oliveira ARF, Menezes MS. Effect of thermally deposited siloxane-methacrylate coating on bonding to glass fibre posts. International Endodontic Journal, 51, 79-85, 2018. Aim To evaluate the alterations promoted by a thermally deposited siloxane-methacrylate coating on the surface of glass fibre posts and their effect on the bond strength of resin-core materials to the posts. Methodology Fibre post surfaces were treated with experimental thermally deposited siloxanemethacrylate coatings or clinically available treatments (i.e. hydrogen peroxide and methylene chloride); nontreated posts were used as controls. The contact angles formed between the post surface and the water/adhesive were measured with a tensiometer. Scanning electron microscopy and electron dispersive spectroscopy were used to examine the topographies and chemical changes in the post surfaces following treatment. Surface roughness was evaluated with laser interferometry. Core resin was bonded to the fibre posts, and microtensile bond strength testing was subsequently performed. The data were individually submitted to ANOVA and Tukey's tests (a = 0.05). Results The water contact angle was reduced significantly (P < 0.05) by the thermally deposited siloxane-methacrylate coating. All treatments significantly increased the adhesive contact angle (P ≤ 0.016) compared to the control as well as the surface roughness (P ≤ 0.006) and the amount of Si on post surfaces. Greater percentages of Si were observed for the thermally deposited coating. The bond strength to the posts was significantly improved by the thermally deposited coating (P < 0.05), whereas the other treatments did not differ from the control. Conclusion Treating the surface of glass fibre posts with a thermally deposited siloxane-methacrylate coating improved the bond strength to resin-based materials. The coating could be performed by manufacturers of glass fibre posts in order to reduce the number of clinical steps required for luting posts into root canals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.