The aim of this study was to evaluate the morphological bone response in animal experiments by applying hydroxyapatite grafts in critical and non-critical size bone defects. Current report followed the guidelines established by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Animal experiments were selected by assessing repair of bone defects with hydroxyapatite as bone graft and with blood clot only as control. Eight articles were identified in specialized literature and included in the meta-analysis. Statistical analysis was carried out with a random-effect model (p = 0.05). Subgroup analyses were further performed to investigate bone repair in critical and non-critical bone defects. Comprehensive analysis of bone repair outcome showed a statistically significant difference between hydroxyapatite and blood clot control (p < 0.05). Subgroup analyses showed statistically significant difference for critical bone defects (p < 0.05). No statistically significant difference was reported in non-critical bone defects (p > 0.05). Although animal studies revealed a high risk of bias and results should be interpreted with caution, the literature suggests that non-critical bone defects may heal spontaneously and without the need of a bone graft. Conversely, when critical-size defects are present, the use of hydroxyapatite bone graft improves the bone repair process.
Currently, the availability of a wide variety of universal adhesives makes it difficult for clinicians to choose the correct system for specific bonding situations to dentin substrate. This study aimed to determine whether there are any alternative techniques or additional strategies available to enhance the bond strength of universal adhesives to dentin through a systematic review and meta-analysis. Two reviewers executed a literature search up to September 2020 in four electronic databases: PubMed, ISI Web of Science, Scopus, and EMBASE. Only in vitro studies that reported the dentin bond strength of universal adhesives using additional strategies were included. An analysis was carried out using Review Manager Software version 5.3.5 (The Nordic Cochrane Centre, The Cochrane Collaboration, Copenhagen, Denmark). The methodological quality of each in vitro study was assessed according to the parameters of a previous systematic. A total of 5671 potentially relevant studies were identified. After title and abstract examination, 74 studies remained in systematic review. From these, a total of 61 studies were included in the meta-analysis. The bond strength of universal adhesives to dentin was improved by the use of one of the following techniques: Previous application of matrix metalloproteinases (MMP) inhibitors (p < 0.001), prolonged application time (p = 0.007), scrubbing technique (p < 0.001), selective dentin etching (p < 0.001), non-atmospheric plasma (p = 0.01), ethanol-wet bonding (p < 0.01), prolonged blowing time (p = 0.02), multiple layer application (p = 0.005), prolonged curing time (p = 0.006), and hydrophobic layer coating (p < 0.001). On the other hand, the use of a shortened application time (p = 0.006), and dentin desensitizers (p = 0.01) impaired the bond strength of universal adhesives to dentin. Most of the analyses performed showed a high heterogenicity. The in vitro evidence suggests that the application of universal adhesives using some alternative techniques or additional strategies may be beneficial for improving their bonding performance to dentin. This research received no external funding. Considering that this systematic review was carried out only with in vitro studies, registration was not performed.
Immediate dentin sealing (IDS) involves applying an adhesive system to dentin directly after tooth preparation, before impression. This was considered an alternate to delayed dentin sealing (DDS), a technique in which hybridization is performed following the provisional phase and just before the indirect restoration luting procedure. This study aimed to compare the bond strength of restorations to dentin of the IDS and the DDS techniques throughout a systematic review and meta-analysis. The following PICOS framework was used: population, indirect restorations; intervention, IDS; control, DDS; outcomes, bond strength; and study design, in vitro studies. PubMed (MedLine), The Cochrane Library, ISI Web of Science, Scielo, Scopus, and Embase were screened up to January 2022 by two reviewers (L.H. and R.B.). In vitro papers studying the bond strength to human dentin of the IDS technique compared to the DDS technique were considered. Meta-analyses were carried out by using a software program (Review Manager v5.4.1; The Cochrane Collaboration). Comparisons were made by considering the adhesive used for bonding (two-step etch-and-rinse, three step etch-and-rinse, one-step self-etch, two-step self-etch, and universal adhesives). A total of 3717 papers were retrieved in all databases. After full-text assessment, 22 potentially eligible studies were examined for qualitative analysis, leaving a total of 21 articles for the meta-analysis. For the immediate bond strength, regardless of the adhesive strategy used, the IDS technique improved the bond strength of restorations to the dentin (p < 0.001). Taking into account the subgroup analysis, it seems that the use of the IDS technique with a two-step etch-and-rinse or a one-step self-etch adhesive system does not represent any advantage over the DDS technique (p = 0.07, p = 0.15). On the other hand, for the aged bond strength, regardless of the adhesive strategy used, the IDS technique improved the bond strength of restorations to the dentin (p = 0.001). The subgroups analysis shows that this improvement is observed only when a three-step etch-and-rinse adhesive system (p < 0.001) or when a combination of an adhesive system plus a layer of flowable resin (p = 0.01) is used. The in vitro evidence suggests that the use of the IDS technique improves the bond strength of dentin to resin-based restorations regardless of the adhesive strategy used. The use of a three-step etch-and-rinse adhesive system or the combination of an adhesive system plus a layer of flowable resin seems to considerably enhance the bond strength in the long term.
An experiment for the calculation of the degree of double bond conversion, after a polymerization reaction, of photopolymerizable liquid monomers using FTIR-ATR spectroscopy is reported. The experiment was successfully conducted with undergraduate students in materials engineering during the Fundamentals of Polymeric Material course. Students synthesized a Bis-GMA and TEGDMA copolymer through radical chain polymerization using visible light as the energy source (photopolymerization). Through the quantitative analysis of two absorption bands in the FTIR spectra of the monomer and the polymer, the νCC of the alkene group at 1638 cm −1 and the νCC of the aromatic ring at 1610 cm −1 , students calculated the degree of double bond conversion after the polymerization reaction. Students acquired competencies in the synthesis and qualitative and quantitative characterization of polymeric materials through FTIR spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.