An experiment for the calculation of the degree of double bond conversion, after a polymerization reaction, of photopolymerizable liquid monomers using FTIR-ATR spectroscopy is reported. The experiment was successfully conducted with undergraduate students in materials engineering during the Fundamentals of Polymeric Material course. Students synthesized a Bis-GMA and TEGDMA copolymer through radical chain polymerization using visible light as the energy source (photopolymerization). Through the quantitative analysis of two absorption bands in the FTIR spectra of the monomer and the polymer, the νCC of the alkene group at 1638 cm −1 and the νCC of the aromatic ring at 1610 cm −1 , students calculated the degree of double bond conversion after the polymerization reaction. Students acquired competencies in the synthesis and qualitative and quantitative characterization of polymeric materials through FTIR spectroscopy.
Two novel polyelectrolytes were obtained by chemical modification of poly(4-acryloyloxybenzaldehyde) using o-and p-aminophenylsulfonic acid, the characterization shows a chemical modification of 24.38 and 63.33%, respectively. The study shows that the polyelectrolyte with sulfonic acid in para position reduces metal ions more rapidly than polyelectrolyte in ortho position. The obtained nanoparticles of Au and Ag were characterized by ultraviolet-visible absorption spectroscopy (UV-vis) and transmission electron microscopy. The results showed that these ionic polymers are not only capable of reducing gold and silver ions, but also can stabilize the nanoparticles in the colloidal solutions. With these polymers, the process of metallic ions reduction is very slow and they lead to the production of Au and Ag nanoparticles with quasi-spherical shapes which are stable in colloidal solutions for several months. The advantage of the method used here is that the reduction can be realized in water at room temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.