Indole alkaloids and synthetic indole derivatives are well known for their therapeutic importance. In fact, preclinical and clinical studies had already demonstrated several pharmacological activities for these compounds. Here, we overview the multifunctional potential of these molecules for the inhibition of enzymes related to neurodegenerative disease: acetylcholinesterase (AChE), butyrylcholinesterase (BChE), monoamine oxidases A and B (MAO-A and MAO-B). A focus will be given on Psychotria L. genus, considering its reported central effects. Finally, three Psychotria alkaloids, namely desoxycordiofoline (61), bahienoside A (64) and bufotenine (65), along with the synthetic indole derivatives (5S)- 5-(1H-indol-3-ylmethyl)imidazolidine-2,4-dione (66), 5-(1H-indol-3-ylmethyl)-2-thioxoimidazolin-4-one (67), 5-(1Hindol- 3-ylmethyl)-3-methyl-2-thioxoimidazolidin-4-one (68), and methyl 2-(aminoN-(2-(4-methylcyclohex-3-enyl)propan- 2-yl)methanethioamino)-3-(1H-indol-3-yl)propanoate (69), were evaluated in vitro regarding their interactions with AChE, BChE, MAO-A and MAO-B. It was observed that 66 and 68 were able to inhibit MAO-A activity with IC50 value of 8.23 and 0.07 μM. Molecular docking calculations were performed in order to understand the interactions between both ligands (66 and 68) and MAO-A. It was observed that the indole scaffold of both compounds bind into the MAO-A active site in the same orientation, establishing van der Waals contacts with lipophilic amino acids. Additionally, the hydantoin ring of 66 is able to interact by hydrogen bonds with two conserved water molecules in the MAO-A active site, while the methyl-thiohydantoin ring of 68 is within hydrogen bond distance from the hydrogen atom attached to the (N-5) of FAD cofactor. Taking together, our findings demonstrate that the indolyl-hydantoin and indolylmethyl-thiohydantoin rings might consists of good scaffolds for the development of new MAO-A inhibitors possessing neuroprotective properties.
The structural and dielectric properties of both pure and Nd3+-doped Ba0.77Ca0.23TiO3 (BCT23) ceramics obtained from solid-state reaction were investigated. The BCT23 ceramics sintered at 1300 °C for 3 h showed a dense microstructure without the presence of secondary phases. The use of Nd3+ as a dopant affected the microstructure of these ceramics. Samples prepared with Nd3+ exhibit a more homogeneous microstructure without a liquid phase on the grain boundaries. The dielectric constant and Raman scattering measurements indicate that the Curie temperature of the ferroelectric phase transition depends on Nd3+ content. It shifts toward lower temperatures with Nd3+ addition.
Enhanced dielectric and piezoelectric properties of xBaZrO3-(1−x)BaTiO3 ceramics J. Appl. Phys. 111, 084107 (2012) Combined experimental and theoretical study of the low temperature dielectric and magnetic properties of trivalent Eu ion doped SrTiO3 ceramics J. Appl. Phys. 111, 063529 (2012) The long range voice coil atomic force microscope Rev. Sci. Instrum. 83, 023705 (2012) Large area ceramic thin films on plastics: A versatile route via solution processing J. Appl. Phys. 111, 016106 (2012) Oxygen deficiency and grain boundary-related giant relaxation in Ba(Zr,Ti)O3 ceramics J. Appl. Phys. 110, 114110 (2011) Additional information on J. Appl. Phys. The pure and RE-doped BCT23 ceramics sintered at 1450 C in air for 4 h showed a dense microstructure in all ceramics. The use of RE ions as dopants introduced lattice-parameter changes that manifested in the reduction of the volume of the unit cell. RE-doped BCT23 samples exhibit a more homogenous microstructure due to the absence of a Ti-rich phase in the grain boundaries as demonstrated by scanning electron microscopy imaging. The incorporation of REs led to perturbations of the local symmetry of TiO 6 octahedra and the creation of a new Raman mode. The results of Raman scattering measurements indicated that the Curie temperature of the ferroelectric phase transition depends on the RE ion and ion content, with the Curie temperature shifting toward lower values as the RE content increases, with the exception of Yb 3þ doping, which did not affect the ferroelectric phase transition temperature. The phase transition behavior is explained using the standard soft mode model. Electronic paramagnetic resonance measurements showed the existence of Ti vacancies in the structure of RE-doped BCT23. Defects are created via charge compensation mechanisms due to the incorporation of elements with a different valence state relative to the ions of the pure BCT23 host. It is concluded that the Ti vacancies are responsible for the activation of the Raman mode at 840 cm À1 , which is in agreement with lattice dynamics calculations.
ABSTRACT:Introduction -Species of the genera Psychotria and Palicourea are sources of indole alkaloids, however, the distribution of alkaloids within the plants is not known. Analysing the spatial distribution using desorption electrospray ionisation mass spectrometry imaging (DESI-MSI) has become attractive due to its simplicity and high selectivity compared to traditional histochemical techniques. Objectives -To apply DESI-MSI to visualise the alkaloid distribution on the leaf surface of Psychotria prunifolia and Palicourea coriacea and to compare the distributions with HPLC-MS and histochemical analyses. Methodology -Based upon previous structure elucidation studies, four alkaloids targeted in this study were identified using high resolution mass spectrometry by direct infusion of plant extracts, and their distributions were imaged by DESI-MSI via tissue imprints on a porous Teflon surface. Relative quantitation of the four alkaloids was obtained by HPLC-MS/MS analysis performed using multiple-reaction monitoring (MRM) mode on a triple quadrupole mass spectrometer. Results -Alkaloids showed distinct distributions on the leaf surfaces. Prunifoleine was mainly present in the midrib, while 10-hydroxyisodeppeaninol was concentrated close to the petiole; a uniform distribution of 10-hydroxyantirhine was observed in the whole leaf of Psychotria prunifolia. The imprinted image from the Palicourea coriacea leaf also showed a homogeneous distribution of calycanthine throughout the leaf surface. Conclusion -Different distributions were found for three alkaloids in Psychotria prunifolia, and the distributions found by MSI were in complete accordance with HPLC-MS analysis and histochemical results. The DESI-MSI technique was therefore demonstrated to provide reliable information about the spatial distribution of metabolites in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.