To characterize the skin-associated fungal microbiota (mycobiota) in dogs, and to evaluate the influence of body site, individual dog or health status on the distribution of fungi, next-generation sequencing was performed targeting the internal transcribed spacer region. A total of 10 dogs with no history of skin disease were sampled at 10 distinct body sites consisting of haired and mucosal skin, and 8 dogs with diagnosed skin allergies were sampled at six body sites commonly affected by allergic disease. Analysis of similarities revealed that body site was not an influencing factor on membership or structure of fungal communities in healthy skin; however, the mucosal sites were significantly reduced in fungal richness. The mycobiota from body sites in healthy dogs tended to be similar within a dog, which was visualized in principle coordinates analysis (PCoA) by clustering of all sites from one dog separate from other dogs. The mycobiota of allergic skin was significantly less rich than that of healthy skin, and all sites sampled clustered by health status in PCoA. Interestingly, the most abundant fungi present on canine skin, across all body sites and health statuses, were Alternaria and Cladosporium—two of the most common fungal allergens in human environmental allergies.
Objective
Immunodeficient patients are particularly vulnerable to neuroinvasive infections that can be challenging to diagnose. Metagenomic next-generation sequencing can identify unusual or novel microbes and is therefore well suited for investigating the etiology of chronic meningoencephalitis in immunodeficient patients.
Methods
We present the case of a 34 year-old man with X-linked agammaglobulinemia from Australia suffering from three years of meningoencephalitis that defied an etiologic diagnosis despite extensive conventional testing, including a brain biopsy. Metagenomic next-generation sequencing of his cerebrospinal fluid and brain biopsy tissue was performed to identify a causative pathogen.
Results
Sequences aligning to multiple Cache Valley virus genes were identified via metagenomic next-generation sequencing. Reverse transcription polymerase chain reaction and immunohistochemistry subsequently confirmed the presence of Cache Valley virus in the brain biopsy tissue.
Interpretation
Cache Valley virus, a mosquito-borne orthobunyavirus, has only been identified in three immunocompetent North American patients with acute neuroinvasive disease. The reported severity ranges from a self-limiting meningitis to a rapidly fatal meningoencephalitis with multi-organ failure. The virus has never been known to cause a chronic systemic or neurologic infection in humans. Cache Valley virus has also never previously been detected on the Australian continent. Indeed, our research subject traveled to North and South Carolina and Michigan in the weeks prior to the onset of his illness. This report demonstrates that metagenomic next-generation sequencing allows for unbiased pathogen identification, the early detection of emerging viruses as they spread to new locales, and the discovery of novel disease phenotypes.
Early life exposure to fine particulate matter (PM) in air is associated with infant respiratory disease and childhood asthma, but limited epidemiological data exist concerning the impacts of ultrafine particles (UFPs) on the etiology of childhood respiratory disease. Specifically, the role of UFPs in amplifying Th2- and/or Th17-driven inflammation (asthma promotion) or suppressing effector T cells (increased susceptibility to respiratory infection) remains unclear. Using a mouse model of in utero UFP exposure, we determined early immunological responses to house dust mite (HDM) allergen in offspring challenged from 0 to 4 wk of age. Two mice strains were exposed throughout gestation: C57BL/6 (sensitive to oxidative stress) and BALB/C (sensitive to allergen exposure). Offspring exposed to UFPs in utero exhibited reduced inflammatory response to HDM. Compared with filtered air (FA)-exposed/HDM-challenged mice, UFP-exposed offspring had lower white blood cell counts in bronchoalveolar lavage fluid and less pronounced peribronchiolar inflammation in both strains, albeit more apparent in C57BL/6 mice. In the C57BL/6 strain, offspring exposed in utero to FA and challenged with HDM exhibited a robust response in inflammatory cytokines IL-13 and Il-17. In contrast, this response was lost in offspring exposed in utero to UFPs. Circulating IL-10 was significantly up-regulated in C57BL/6 offspring exposed to UFPs, suggesting increased regulatory T cell expression and suppressed Th2/Th17 response. Our results reveal that in utero UFP exposure at a level close to the WHO recommended PM guideline suppresses an early immune response to HDM allergen, likely predisposing neonates to respiratory infection and altering long-term pulmonary health.
Background: Metformin inhibits pancreatic cancer cell and tumor growth and down-regulated Sp transcription factors. Results: Inhibition of mTOR and Ras signaling by metformin is due to decreased expression of Sp-regulated insulin-like growth factor-1 receptor (IGF-1R) and epidermal growth factor receptor (EGFR), respectively. Conclusion: Metformin-induced down-regulation of Sp proteins affects multiple pro-oncogenic pathways. Significance: These results identify important metformin-induced anticancer activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.