Kräutler et al. show that differentiation of antibody-producing plasma cells from germinal center (GC) B cell precursors is initiated by direct contact with high-affinity antigen within the GC but completed by separate signals delivered by collaborating, GC-resident T follicular helper cells.
Memory B cells (MBCs) and plasma cells (PCs) constitute the two cellular outputs of germinal center (GC) responses that together facilitate long-term humoral immunity. Although expression of the transcription factor BLIMP-1 identifies cells undergoing PC differentiation, no such marker exists for cells committed to the MBC lineage. Here, we report that the chemokine receptor CCR6 uniquely marks MBC precursors in both mouse and human GCs. CCR6 GC B cells were highly enriched within the GC light zone (LZ), were the most quiescent of all GC B cells, exhibited a cell-surface phenotype and gene expression signature indicative of an MBC transition, and possessed the augmented response characteristics of MBCs. MBC precursors within the GC LZ predominantly possessed a low affinity for antigen but also included cells from within the high-affinity pool. These data indicate a fundamental dichotomy between the processes that drive MBC and PC differentiation during GC responses.
B helper follicular T (Tfh) cells are critical for long-term humoral immunity. However, it remains unclear how these cells are recruited and contribute to secondary immune responses. Here we show that primary Tfh cells segregate into follicular mantle (FM) and germinal center (GC) subpopulations that display distinct gene expression signatures. Restriction of the primary Tfh cell subpopulation in the GC was mediated by downregulation of chemotactic receptor EBI2. Following collapse of the GC, memory T cells persisted in the outer follicle where they scanned CD169(+) subcapsular sinus macrophages. Reactivation and intrafollicular expansion of these follicular memory T cells in the subcapsular region was followed by their extrafollicular dissemination via the lymphatic flow. These data suggest that Tfh cells integrate their antigen-experience history to focus T cell help within the GC during primary responses but act rapidly to provide systemic T cell help after re-exposure to the antigen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.