Potato cultivation is widespread around the world, being exposed to several abiotic stresses, including soils with high aluminum (Al) availability. Silicon (Si) is recognized for alleviating the stress caused by Al in various plant species. Thus, the aim of this study was to investigate the potential of Si to mitigate the oxidative stress caused by Al in potato genotypes, exhibiting differential sensitivity toward this element. Plants of the Al-sensitive genotype (SMIJ319-7)and Al-tolerant genotype (SMIF212-3) were grown for two weeks in a hydroponic system with the nutrient solution containing combinations of Al (0 and 1.85 mM) and Si (0, 0.5 and 1.0 mM). At the end of the experiment, photosynthetic parameters, pigment content, root and shoot growth, superoxide dismutase and guaiacol peroxidase activity and lipid peroxidation were evaluated. In both potato genotypes Al BASIC AREAS -Article inhibited root and shoot growth and decreased all photosynthetic parameters and superoxide dismutase activity. Silicon was able to partially alleviate the damage caused by Al in parameters of root growth in the Al-tolerant genotype while increasing the activity of antioxidant enzymes and mitigating the Al-induced damage to membrane lipids in roots and shoot in both genotypes. The Al-tolerant genotype showed greater water use efficiency and transpiration rate in control conditions as compared to the Al-sensitive genotype. These data indicate that Si application can improve the defense ability of the tested potato genotypes against Al toxicity and that the Al-tolerant genotype is more responsive to Si.
Cadmium (Cd) is toxic to plants and animals, making it necessary to develop strategies that seek to reduce its introduction into food chains. Thus, the aim of this study was to investigate whether silicon (Si) and selenium (Se) reduce Cd concentrations in Pfaffia glomerata medicinal plant and attenuate the oxidative stress promoted by this metal. These plants were cultivated in hydroponics under the following treatments: control (nutrient solution), 2.5 μM Se, 2.5 mM Si, 50 μM Cd, 50 μM Cd + 2.5 μM Se, 50 μM Cd + 2.5 mM Si. After 14 days of exposure to treatments, leaves and roots were collected for the determination of dry weight of shoot and roots, Cd concentrations, chlorophyll and carotenoids content, and biochemical parameters (lipid peroxidation and guaiacol peroxidase and superoxide dismutase activities). The data were submitted to analysis of variance and means were compared with Scott-Knott test at 5% error probability. Roots of P. glomerata plants showed a significant reduction on dry weight accumulation when exposed to Cd. However, both Se and Si promoted a significant reduction of deleterious effects of Cd. The Cd concentrations in the tissues were reduced in the presence of Se or Si. Plants treated with Cd together with Se or Si presented higher pigment content than those with only Cd, thus showing a reduction in the negative effects caused by this element. In the treatments in which Se and Si were added in the growth medium together with Cd, an activation of superoxide dismutase and guaiacol peroxidase enzymes was observed in the roots and shoot, which may have contributed to lower lipid peroxidation. Thus, Se and Si reduce Cd concentrations and have potential to ameliorate Cd toxicity in P. glomerata plants, which can be used to increase productivity and quality of medicinal plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.