ABSTRACT:The Dynamo module library has been developed for the simulation of molecular systems using hybrid quantum mechanical (QM) and molecular mechanical (MM) potentials. Dynamo is not a program package but is a library of Fortran 90 modules that can be employed by those interested in writing their own programs for performing molecular simulations. The library supports a range of different types of molecular calculation including geometry optimizations, reaction-path determinations and molecular dynamics and Monte Carlo simulations. This article outlines the general structure and capabilities of the library and describes in detail Dynamo's semiempirical QM/MM hybrid potential. Results are presented to indicate three particular aspects of this implementation-the handling of long-range nonbonding interactions, the nature of the boundary between the quantum mechanical and molecular mechanical atoms and how to perform path-integral hybrid-potential molecular dynamics simulations.
We present a new approach for determining dynamical domains in large proteins, either based on a comparison of different experimental structures, or on a simplified normal mode calculation for a single conformation. In a first step, a deformation measure is evaluated for all residues in the protein; a high deformation indicates highly flexible interdomain regions. The sufficiently rigid parts of the protein are then classified into rigid domains and low-deformation interdomain regions on the basis of their global motion. We demonstrate the techniques on three proteins: citrate synthase, which has been the subject of earlier domain analyses, HIV-1 reverse transcriptase, which has a rather complex domain structure, and aspartate transcarbamylase as an example of a very large protein. These examples show that the comparison of conformations and the normal mode analysis lead to essentially the same domain identification, except for cases where the experimental conformations differ by the presence of a large ligand, such as a DNA strand. Normal mode analysis has the advantage of requiring only one experimental structure and of providing a more detailed picture of domain movements, e.g. the splitting of domains into subdomains at higher frequencies.
Langerin is a C-type lectin present on Langerhans cells that mediates capture of pathogens in a carbohydrate-dependent manner, leading to subsequent internalization and elimination in the cellular organelles called Birbeck granules. This mechanism mediated by langerin was shown to constitute a natural barrier for HIV-1 particle transmission. Besides interacting specifically with high mannose and fucosylated neutral carbohydrate structures, langerin has the ability to bind sulfated carbohydrate ligands as 6-sulfated galactosides in the Ca(2+)-dependent binding site. Very recently langerin was demonstrated to interact with sulfated glycosaminoglycans (GAGs), in a Ca(2+)-independent way, resulting in the proposal of a new binding site for GAGs. On the basis of those results, we have conducted a structural study of the interactions of small heparin (HEP)-like oligosaccharides with langerin in solution. Heparin bead cross-linking experiments, an approach specifically designed to identify HEP/heparan sulfate binding sites in proteins were first carried out and experimentally validated the previously proposed model for the interaction of langerin extracellular domain with 6 kDa HEP. High-resolution NMR studies of a set of eight synthetic HEP-like trisaccharides harboring different sulfation patterns demonstrated that all of them bound to langerin in a Ca(2+)-dependent way. The binding epitopes were determined by saturation transfer difference NMR and the bound conformations by transferred NOESY experiments. These experimental data were combined with docking and molecular dynamics and resulted in the proposal of a binding mode characterized by the coordination of calcium by the two equatorial hydroxyl groups, OH3 and OH4, at the non-reducing end. The binding also includes the carboxylate group at the adjacent iduronate residue. This epitope is shared by all eight ligands, explaining the absence of any impact on binding from differences in their substitution patterns. Finally, in contrast to the small trisaccharides, we demonstrated that a longer HEP-like hexasaccharide, bearing an additional O-sulfate group at the non-reducing end, which precludes binding to the Ca(2+) site, interacts with langerin in the previously identified Ca(2+)-independent binding site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.