Rhodamines are the most important class of fluorophores for applications in live-cell fluorescence microscopy. This is mainly because rhodamines exist in a dynamic equilibrium between a fluorescent zwitterion and a nonfluorescent but cell-permeable spirocyclic form. Different imaging applications require different positions of this dynamic equilibrium, and an adjustment of the equilibrium poses a challenge for the design of suitable probes. We describe here how the conversion of the ortho-carboxy moiety of a given rhodamine into substituted acyl benzenesulfonamides and alkylamides permits the systematic tuning of the equilibrium of spirocyclization with unprecedented accuracy and over a large range. This allows one to transform the same rhodamine into either a highly fluorogenic and cell-permeable probe for live-cell-stimulated emission depletion (STED) microscopy or a spontaneously blinking dye for single-molecule localization microscopy (SMLM). We used this approach to generate differently colored probes optimized for different labeling systems and imaging applications.
Phycoerythrin is the major light-harvesting pigment protein in red algae and is nowadays widely used as a fluorescent probe in biotechnological applications such as flow cytometry and immunofluorescence microscopy. In addition, it has had substantial economic impact due to its potential as a natural food colorant. However, knowledge on the precise molecular composition of phycoerythrin is limited. Here, we use a combination of high-resolution native mass spectrometry (MS) and fluorescence spectroscopy to characterize the assembly properties of the B-phycoerythrin protein complex from Porphyridium cruentum. Our data highlight the stabilizing role of the c subunit in the intact B-phycoerythrin protein complex. In addition, by native MS we monitor B-phycoerythrin (dis)assembly intermediates, providing insight into which species contribute to B-phycoerythrins color and the factors that give B-phycoerythrin its highly fluorescent properties. Together, the data provide significant insights into the structural properties of B-phycoerythrin which is beneficial for its use within the biotechnology industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.