We study electrical transport in strongly coupled, molecularly linked, gold nanoparticle (NP) films whose bulk dc conductances are governed by percolation phenomena. Films with fewer NPs exhibit current suppression below a threshold voltage, likely due to single-electron charging of NP clusters. In some cases, the thresholds are very large (∼1 V) and suppression persists to room temperature. The thresholds tend to decrease with increasing amounts of NPs in the film, and eventually, metal-like conductance is observed down to at least 10 K. The observed trend toward metal-like conductance, despite the presence of film disorder, is enabled by strong inter-NP coupling and increasing film connectivity. The latter is an inherent property of molecularly linked NP films due to both robust chemical inter-NP linkages provided by alkane dithiol linker molecules, coupled with the ability to grow chains of connected NPs to arbitrary lengths through cyclical Au/dithol treatments. In the case of small thresholds, our data is well described by a high-temperature approximation of “orthodox” theory for a linear array of tunnel junctions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.