WOS:000332844200022International audienceThis investigation deals with the study of the mean structure of a mildly unstable non-ideal detonation wave. The analysis is based on the integration of one-dimensional reactive Euler equations with friction forces using a third-order Runge-Kutta scheme and a fifth-order weighted essentially non-oscillatory (WENO5) spatial discretization. A one-step Arrhenius reaction mechanism is used for modelling the chemical reaction. When the frictional forces are active, the limit cycle based on the post-shock pressure reveals an enhanced pulsating behaviour of the downstream subsonic reaction zone compared to the ideal case. The results show that the detonation-velocity deficit increases as the mean reaction zone becomes thicker compared to the generalized ZND model. A new master equation, based on the Favre-averaged quantities, is derived and analysed along with new sonicity and thermicity conditions. The analysis of the species, momentum and energy balances reveals that the presence of mechanical fluctuations within the reaction zone constitutes another source of energy withdrawal, meaning that the detonation deviates from its laminar structure. Furthermore, the compressibility of the flow is analysed and the relationships between the fluctuations of temperature, velocity and reactive scalar are discussed in terms of strong Reynolds analogies
A new direct numerical simulation (DNS) code for multi-component gaseous reacting flows has been developed at KAUST, with the state-of-the-art programming model for next generation high performance computing platforms. The code, named KAUST Adaptive Reacting Flows Solver (KARFS), employs the MPI+X programming, and relies on Kokkos for "X" for performance portability to multi-core, many-core and GPUs, providing innovative software development while maintaining backward compatibility with established parallel models and legacy code. The capability and potential of KARFS to perform DNS of reacting flows with large, detailed reaction mechanisms is demonstrated with various model problems involving ignition and turbulent flame propagations with varying degrees of chemical complexities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.