We analyze whether preferential attachment in scientific coauthorship networks is different for authors with different forms of centrality. Using a complete database for the scientific specialty of research about -steel structures,‖ we show that betweenness centrality of an existing node is a significantly better predictor of preferential attachment by new entrants than degree or closeness centrality. During the growth of a network, preferential attachment shifts from (local) degree centrality to betweenness centrality as a global measure. An interpretation is that supervisors of PhD projects and postdocs broker between new entrants and the already existing network, and thus become focal to preferential attachment. Because of this mediation, scholarly networks can be expected to develop differently from networks which are predicated on preferential attachment to nodes with high degree centrality.
Although co-authorship in scientific research has a long history the analysis of co-authorship network to explore scientific collaboration among authors is a relatively new research area. Studies of current literature about co-authorship networks mostly give emphasis to understand patterns of scientific collaborations, to capture collaborative statistics, and to propose valid and reliable measures for identifying prominent author(s). However, there is no such study in the literature which conducts a longitudinal analysis of co-authorship networks. Using a dataset that spans over 20 years, this paper attempts to explore efficiency and trend of co-authorship networks. Two scientists are considered connected if they have co-authored a paper, and these types of connections between two scientists eventually constitute co-authorship networks. Co-authorship networks evolve among researchers over time in specific research domains as well as in interdisciplinary research areas. Scientists from diverse research areas and different geographical locations may participate in one specific co-authorship network whereas an individual scientist may belong to different co-authorship networks. In this paper, we study a longitudinal co-authorship network of a specific scientific research area. By applying approaches to
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.