In this paper, a parametric level set method for reconstruction of obstacles in general inverse problems is considered. General evolution equations for the reconstruction of unknown obstacles are derived in terms of the underlying level set parameters. We show that using the appropriate form of parameterizing the level set function results a significantly lower dimensional problem, which bypasses many difficulties with traditional level set methods, such as regularization, re-initialization and use of signed distance function. Moreover, we show that from a computational point of view, low order representation of the problem paves the path for easier use of Newton and quasi-Newton methods. Specifically for the purposes of this paper, we parameterize the level set function in terms of adaptive compactly supported radial basis functions, which used in the proposed manner provides flexibility in presenting a larger class of shapes with fewer terms. Also they provide a "narrow-banding" advantage which can further reduce the number of active unknowns at each step of the evolution. The performance of the proposed approach is examined in three examples of inverse problems, i.e., electrical resistance tomography, X-ray computed tomography and diffuse optical tomography
Spatial resolution, spectral contrast and occlusion are three major bottlenecks for non-invasive inspection of complex samples with current imaging technologies. We exploit the sub-picosecond time resolution along with spectral resolution provided by terahertz time-domain spectroscopy to computationally extract occluding content from layers whose thicknesses are wavelength comparable. The method uses the statistics of the reflected terahertz electric field at subwavelength gaps to lock into each layer position and then uses a time-gated spectral kurtosis to tune to highest spectral contrast of the content on that specific layer. To demonstrate, occluding textual content was successfully extracted from a packed stack of paper pages down to nine pages without human supervision. The method provides over an order of magnitude enhancement in the signal contrast and can impact inspection of structural defects in wooden objects, plastic components, composites, drugs and especially cultural artefacts with subwavelength or wavelength comparable layers.
We propose a new shape-based modeling technique for applications in imaging problems. Given a collection of shape priors (a shape dictionary), we define our problem as choosing the right dictionary elements and geometrically composing them through basic set operations to characterize desired regions in an image. This is a combinatorial problem solving which requires an exhaustive search among a large number of possibilities. We propose a convex relaxation to the problem to make it computationally tractable. We take some major steps towards the analysis of the proposed convex program and characterizing its minimizers. Applications vary from shape-based characterization, object tracking, optical character recognition, and shape recovery in occlusion, to other disciplines such as the geometric packing problem.
In this paper, we consider the binary classification problem via distributed Support Vector Machines (SVMs), where the idea is to train a network of agents, with limited share of data, to cooperatively learn the SVM classifier for the global database. Agents only share processed information regarding the classifier parameters and the gradient of the local loss functions instead of their raw data. In contrast to the existing work, we propose a continuoustime algorithm that incorporates network topology changes in discrete jumps. This hybrid nature allows us to remove chattering that arises because of the discretization of the underlying CT process. We show that the proposed algorithm converges to the SVM classifier over time-varying weight balanced directed graphs by using arguments from the matrix perturbation theory.
This paper presents a new joint inversion approach to shape-based inverse problems. Given two sets of data from distinct physical models, the main objective is to obtain a unified characterization of inclusions within the spatial domain of the physical properties to be reconstructed. Although our proposed method generally applies to many types of inverse problems, the main motivation here is to characterize subsurface contaminant source-zones by processing down gradient hydrological data and cross-gradient electrical resistance tomography (ERT) observations. Inspired by Newton's method for multi-objective optimization, we present an iterative inversion scheme in which descent steps are chosen to simultaneously reduce both data-model misfit terms. Such an approach, however, requires solving a non-smooth convex problem at every iteration, which is computationally expensive for a pixelbased inversion over the whole domain. Instead, we employ a parametric level set (PaLS) technique that substantially reduces the number of underlying parameters, making the inversion computationally tractable. The performance of the technique is examined and discussed through the reconstruction of source zone architectures that are representative of dense non-aqueous phase liquid (DNAPL) contaminant release in a statistically homogenous sandy aquifer. In these examples, the geometric configuration of the DNAPL mass is considered along with additional information about its spatial variability within the contaminated zone, such as the identification of low and high saturation regions. Comparison of the reconstructions with the true DNAPL architectures highlights the superior performance of the model-based technique and joint inversion scheme. *
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.