Advances in technology have fundamentally changed how information is produced and consumed by all actors involved in tourism. Tourists can now access different sources of information, and they can generate their own content and share their views and experiences. Tourism content shared through social media has become a very influential information source that impacts tourism in terms of both reputation and performance. However, the volume of data on the Internet has reached a level that makes manual processing almost impossible, demanding new analytical approaches. Sentiment analysis is rapidly emerging as an automated process of examining semantic relationships and meaning in reviews. In this article, different sentiment analysis approaches applied in tourism are reviewed and assessed in terms of the datasets used and performances on key evaluation metrics. The article concludes by outlining future research avenues to further advance sentiment analysis in tourism as part of a broader Big Data approach.
With the growth of smartphone usage the number of social media posts has significantly increased and represents potentially valuable information for management, including of natural resources and the environment. Already, evidence of using 'human sensor' in crises management suggests that collective knowledge could be used to complement traditional monitoring. This research uses Twitter data posted from the Great Barrier Reef region, Australia, to assess whether the extent and type of data could be used to Great Barrier Reef organisations as part of their monitoring program. The analysis reveals that large amounts of tweets, covering the geographic area of interest, are available and that the pool of information providers is greatly enhanced by the large number of tourists to this region. A keyword and sentiment analysis demonstrates the usefulness of the Twitter data, but also highlights that the actual number of Reef-related tweets is comparatively small and lacks specificity. Suggestions for further steps towards the development of an integrative data platform that incorporates social media are provided.
In this paper, a signature verification method based on texture features involving off-line signatures written in two different Indian scripts is proposed. Both Local Binary Patterns (LBP) and Uniform Local Binary Patterns (ULBP), as powerful texture feature extraction techniques, are used for characterizing off-line signatures. The Nearest Neighbour (NN) technique is considered as the similarity metric for signature verification in the proposed method. To evaluate the proposed verification approach, a large Bangla and Hindi off-line signature dataset (BHSig260) comprising 6240 (260×24) genuine signatures and 7800 (260×30) skilled forgeries was introduced and further used for experimentation. We further used the GPDS-100 signature dataset for a comparison. The experiments were conducted, and the verification accuracies were separately computed for the LBP and ULBP texture features. There were no remarkable changes in the results obtained applying the LBP and ULBP features for verification when the BHSig260 and GPDS-100 signature datasets were used for experimentation.
Purpose Destination monitoring is crucial to understand performance and identify key points of differentiation. Visitor satisfaction is an essential driver of destination performance. With the fast-growing volume of user-generated content through social media, it is now possible to tap into very large amounts of data provided by travellers as they share their experiences. Analysing these data for consumer sentiment has become attractive for destinations and companies. The idea of drawing on social media sentiment for satisfaction monitoring aligns well with the broader move towards smart destinations and real-time information processing. Thus, this paper aims to examine whether the electronic word of mouth originating from Twitter posts offers a useful source for assessing destination sentiment. Importantly, this research examines what caveats need to be considered when interpreting the findings. Design/methodology/approach This research focusses on a prominent tourist destination situated on Australia’s East Coast, the Gold Coast. Using a geographically informed filtering process, a collection of tweets posted from within the Gold Coast destination was created and analysed. Metadata were analysed to assess the population of Twitter users, and sentiment analysis, using the Valence Aware Dictionary for Sentiment Reasoning algorithm, was performed. Findings Twitter posts provide considerable information, including about who is visiting and what sentiment visitors and residents express when sending tweets from a destination. They also uncover some challenges, including the “noise” of Twitter data and the fact that users are not representative of the broader population, in particular for international visitors. Research limitations/implications This paper highlights limitations such as lack of representativeness of the Twitter data, positive bias and the generic nature of many tweets. Suggestions for how to improve the analysis and value of tweets as a data source are made. Practical implications This paper contributes to understanding the value of non-traditional data sources for destination monitoring, in particular by highlighting some of the pitfalls of using information sources, such as Twitter. Further research steps have been identified, especially with a view to improving target-specific sentiment scores and the future employment of big-data approaches that involve integrating multiple data sources for destination performance monitoring. Social implications The identification of cost-effective ways of measuring and monitoring guest satisfaction can lead to improvements in destination management. This in turn will enhance customer experience and possibly even resident satisfaction. The social benefits, especially at times of considerable visitation pressure, can be important. Originality/value The use of Twitter data for the monitoring of visitor sentiment at tourist destinations is novel, and the analysis presented here provides unique insights into the potential, but also the caveats, of developing new, smart systems for tourism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.