In recent years, the number of patients suffering from melanoma, as the deadliest type of skin cancer, has grown significantly in the world. The most common technique to observe and diagnosis of such cancer is the use of noninvasive dermoscope lens. Since this approach is based on the expert ocular inference, early stage of melanoma diagnosis is a difficult task for dermatologist. The main purpose of this article is to introduce an efficient algorithm to analyze the dermoscopic images. The proposed algorithm consists of four stages including converting the image color space from the RGB to CIE, adjusting the color space by applying the combined histogram equalization and the Otsu thresholding-based approach, border extraction of the lesion through the local Radon transform, and recognizing the melanoma and nonmelanoma lesions employing the ABCD rule. Simulation results in the designed user-friendly software package environment confirmed that the proposed algorithm has the higher quantities of accuracy, sensitivity, and approximation correlation in comparison with the other state-of-the-art methods. These values are obtained 98.81 (98.92), 94.85 (89.51), and 90.99 (86.06) for melanoma (nonmelanoma) lesions, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.