BackgroundAfter coitus and insemination, an inflammatory response is evident in the female reproductive tract (FRT). Semen contains a variety of immune‐activating components that have a major role in the induction of an immune response in the FRT. One of the most important is (human leukocyte antigen) HLA molecules which are present in soluble form in seminal plasma and in membrane form on the surface of cells (such as epithelial and leukocytes) existing in semen. Nevertheless, there is considerable debate over the expression of HLA antigens by human spermatozoa. Considering the critical role of HLA molecules in reproduction and the induction of an immune response, it is very important to clearly define HLA expression by spermatozoa and the role of these molecules in sperm morphology, motility, and strength to fertilize an egg. Therefore, the objective of this study was to determine HLA expression by ejaculated spermatozoa. The results of this study will facilitate the design of future studies.MethodSemen samples were collected from 50 healthy men with normal semen status by masturbation after 2–3 days of sexual abstinence. After purification of normal spermatozoa, HLA class I & II expression was evaluated by quantitative real‐time PCR and flow cytometry methods.ResultsThe results showed the expression of both HLA class I & class II by spermatozoa. The results also showed that the expression of HLA class Ⅱ was significantly more than HLA class Ⅰ.ConclusionSpermatozoa express both HLA class I & class II molecules.
Protein compounds of licorice showed anticancer properties and were able to induce apoptosis in both human colon cancer and mouse colon carcinoma cell lines.
Background:Human B-cell responses are regulated through synergy between a collection of activation and inhibitory receptors. Fc receptor-like (FCRL) molecules have recently been identified as co-receptors that are preferentially expressed in human B-cells, which may also play an important role in the regulation of human B-cell responses. FCRL1 is a member of the FCRL family molecules with 2 immunoreceptor tyrosine-based activation motifs (ITAMs) in its cytoplasmic tail. This study aimed to investigate the regulatory roles of FCRL1 in human B-cell responses.Materials and methods:The regulatory potential of FCRL1 in human B-cell through knockdown of FCRL1 expression in the Ramos and Daudi Burkitt lymphoma (BL) cell lines by using the retroviral-based short hairpin ribonucleic acid (shRNA) delivery method. The functional consequences of FCRL1 knockdown were assessed by measuring the proliferation, apoptosis, and the expression levels of Bcl-2, Bid, and Bax genes as well as phosphoinositide-3 kinase/-serine-threonine kinase AKT (PI3K/p-AKT) pathway in the BL cells, using the quantitative real-time polymerase chain reaction (PCR) and flow cytometry analysis. The NF-κB activity was also measured by the enzyme-linked immunosorbent assay (ELISA).Results:FCRL1 knockdown significantly decreased cell proliferation and increased apoptotic cell death in the BL cells. There was a significant reduction in the extent of the Bcl-2 gene expression in the treated BL cells compared with control cells. On the contrary, FCRL1 knockdown increased the expression levels of Bid and Bax genes in the treated BL cells when compared with control cells. In addition, the extent of the PI3K/p-AKT expression and phosphorylated-p65 NF-κB activity was significantly decreased in the treated BL cells compared with control cells.Conclusions:These results suggest that FCRL1 can play a key role in the activation of human B-cell responses and has the potential to serve as a target for immunotherapy of FCRL1 positive B-cell-related disorders.
is still the common host for ing and heterologous protein expression. Various strategies have been employed to increase protein expression in , but, it seems that external factors such as selection marker concentration can drastically affect the yield of protein and plasmid. Alterations of protein expression and plasmid yields of in different concentrations of ampicillin, as selection marker, will be determined. In order to improve heterologous expression, the system will be redesigned and optimized. The expression cassette of codon optimized EGFP for was synthesized in pUC57. The pUC57-GFP was transformed into. The expression of GFP was verified by SDS-PAGE and flow cytometry after induction by IPTG (0.5 mM) and incubation with 0, 100, 200 and 300 μg.mL ampicillin. Plasmid copy numbers of samples were determined by Real-Time PCR on AMP gene using regression line of diluted standard curve. GFP expressing clones formed fair green colonies on LB agar supplemented with 0.5 mM IPTG and showed fluorescence in FL1 filter of flow cytometry and an extra protein band on SDS-PAGE gel. The fluorescent intensity of GFP in 0, 100, 200 and 300 μg.mL ampicillin in medium were 549.83, 549.78, 1443.52, 684.87, and plasmid copy numbers were 6.07×10 , 3.21×10 , 2.32×10 , 8.11×10 , respectively. The plasmid yields were 55 ng.μL, 69 ng.μL, 164 ng.μL and 41 ng.μL, respectively. Protein and plasmid yields of are variable in different concentrations of ampicillin and need to be optimized in newly designed expression systems. Protein and plasmid yield in the optimized concentration (200 μg.mL) was significantly (p < 0.01) higher than other doses.
Background NET (neutrophil extracellular trap) has been shown to directly influence inflammation; in SLE (systemic lupus erythematosus), it is reportedly a plausible cause for the broken self-tolerance that contributes to this pathology. Meanwhile, the role of NET is not easily explicable, and there is a serious discrepancy in the role of NET in SLE pathology and generally inflammation; in particular, the interactions of neutrophils with NET have been rarely inspected. This study evaluates the effect of NET on neutrophils in the context of SLE. The neutrophils were incubated by the collected NET (from SLE patients and healthy controls) and their expression of an activation marker, viability and oxidative burst ability were measured. Results The level of cell mortality, CD11b expression and the oxidative burst capacity were elevated in NET-treated neutrophils. Also, the elevation caused by the SLE NET was higher than that produced by the healthy NET. Conclusion The decreased neutrophil viability was not due to the increase in apoptosis; rather, it was because of the augmentation of other inflammatory cell-death modes. The upregulation of CD11b implies that NET causes neutrophils to more actively contribute to inflammation. The increased oxidative burst capacity of neutrophils can play a double role in inflammation. Overall, the effects induced by NET on neutrophils help prolong inflammation; accordingly, the NET collected from SLE patients is stronger than the NET from healthy individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.