The present study was focused on the removal of methylene blue (MB) from aqueous solution by ultrasound-assisted adsorption onto the gold nanoparticles loaded on activated carbon (Au-NP-AC). This nanomaterial was characterized using different techniques such as SEM, XRD, and BET. The effects of variables such as pH, initial dye concentration, adsorbent dosage (g), temperature and sonication time (min) on MB removal were studied and using central composite design (CCD) and the optimum experimental conditions were found with desirability function (DF) combined response surface methodology (RSM). Fitting the experimental equilibrium data to various isotherm models such as Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich models show the suitability and applicability of the Langmuir model. Analysis of experimental adsorption data to various kinetic models such as pseudo-first and second order, Elovich and intraparticle diffusion models show the applicability of the second-order equation model. The small amount of proposed adsorbent (0.01 g) is applicable for successful removal of MB (RE>95%) in short time (1.6 min) with high adsorption capacity (104-185 mg g(-1)).
This review (with 151 refs) focuses on recent progress that has been made in magnetic nanoparticle-based solid phase extraction (SPE), pre-concentration and speciation of heavy metal ions. In addition, it discusses applications to complex real samples such as environmental, food, and biological matrices. The introduction addresses current obstacles and limitations associated with established SPE approaches and discusses the present state of the art in different formats of off-line and on-line SPE. The next section covers magnetized inorganic nanomaterials for use in SPE, with subsections on magnetic silica, magnetic alumina and titania, and on magnetic layered double oxides. A further section treats magnetized carbonaceous nanomaterials for use in SPE, with subsections on magnetic graphene and/or graphene oxides, magnetic carbon nanotubes and magnetic carbon nitrides. We then discuss the progress made in SPE based on the use of magnetized organic polymers (mainly non-imprinted and ion-imprinted polymer). This is followed by shorter sections on the use of magnetized metal organic frameworks, magnetized ionic liquids and magnetized biosorbents. All sections include discussions of the nanomaterials in terms of selectivity, sorption capacity, mechanisms of sorption and common routes for material synthesis. A concluding section addresses actual challenges and discusses perspective routes towards further improvements. Graphical abstract An overview on booster nanomaterials (ionic liquids, inorganic, organic and biological materials, and metal-organic frameworks) for use in magnetic nanoparticle-based solid-phase extraction of heavy metal ions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.