Aim: Relationships between athlete monitoring-derived variables and injury risk have been investigated predominantly in isolation. The aim of this study was to evaluate the individual and combined effects of multiple factors on the risk of soft-tissue non-contact injuries in elite team sport athletes.Methods: Fifty-five elite Australian footballers were prospectively monitored over two consecutive seasons. Internal and external training load was quantified using the session rating of perceived exertion and GPS/accelerometry, respectively. Cumulative load and acute-to-chronic workload ratios were derived using rolling averages and exponentially weighted moving averages. History of injuries in the current and previous seasons was recorded along with professional experience, weekly musculoskeletal screening, and subjective wellness scores for individual athletes. Individual and combined effects of these variables on injury risk were evaluated with generalized linear mixed models.Results: High cumulative loads and acute-to-chronic workload ratios were associated with increased risk of injuries. The effects for measures derived using exponentially weighted moving averages were greater than those for rolling averages. History of a recent injury, long-term experience at professional level, and substantial reductions in a selection of musculoskeletal screening and subjective wellness scores were associated with increased risk. The effects of high cumulative loads were underestimated by ~20% before adjusting for previous injuries, whereas the effects of high acute-to-chronic workload ratios were overestimated by 10–15%. Injury-prone players, identified via player identity in the mixed model, were at > 5 times higher risk of injuries compared to robust players (hazard ratio 5.4, 90% confidence limits 3.6–12) despite adjusting for training load and previous injuries. Combinations of multiple risk factors were associated with extremely large increases in risk; for example, a hazard ratio of 22 (9.7–52) was observed for the combination of high acute load, recent history of a leg injury, and a substantial reduction in the adductor squeeze test score.Conclusion: On the basis of our findings with an elite team of Australian footballers, the information from athlete monitoring practices in team sports should be interpreted collectively and used as a part of the injury prevention decision-making process along with consideration of individual differences in risk.
Aim: The use of external and internal load is an important aspect of monitoring systems in team sport. The aim of this study was to validate a novel measure of training load by quantifying the training-performance relationship of elite Australian footballers.Methods: The primary training measure of each of 36 players was weekly load derived from a weighted combination of Global Positioning System (GPS) data and perceived wellness over a 24-week season. Smoothed loads representing an exponentially weighted rolling average were derived with decay time constants of 1.5, 2, 3, and 4 weeks. Differential loads representing rate of change in load were generated in similar fashion. Other derived measures of training included monotony, strain and acute:chronic ratio. Performance was a proprietary score derived from match performance indicators. Effects of a 1 SD within-player change below and above the mean of each training measure were quantified with a quadratic mixed model for each position (defenders, forwards, midfielders, and rucks). Effects were interpreted using standardization and magnitude-based inferences.Results: Performance was generally highest near the mean or ~1 SD below the mean of each training measure, and 1 SD increases in the following measures produced small impairments: weekly load (defenders, forwards, and midfielders); 1.5-week smoothed load (midfielders); 4-week differential load (defenders, forwards, and midfielders); and acute:chronic ratio (defenders and forwards). Effects of other measures in other positions were either trivial or unclear.Conclusion: The innovative combination of load was sensitive to performance in this elite Australian football cohort. Periods of high acute load and sustained increases in load impaired match performance. Positional differences should be taken into account for individual training prescription.
Introduction: Training load and other measures potentially related to match performance are routinely monitored in team-sport athletes. The aim of this research was to examine the effect of training load on such measures and on match performance during a season of professional football.Materials and Methods: Training load was measured daily as session duration times perceived exertion in 23 A-League football players. Measures of exponentially weighted cumulative training load were calculated using decay factors representing time constants of 3–28 days. Players performed a countermovement jump for estimation of a measure of neuromuscular recovery (ratio of flight time to contraction time, FT:CT), and provided a saliva sample for measurement of testosterone and cortisol concentrations 1-day prior to each of 34 matches. Match performance was assessed via ratings provided by five coaching and fitness staff on a 5-point Likert scale. Effects of training load on FT:CT, hormone concentrations and match performance were modeled as quadratic predictors and expressed as changes in the outcome measure for a change in the predictor of one within-player standard deviation (1 SD) below and above the mean. Changes in each of five playing positions were assessed using standardization and magnitude-based inference.Results: The largest effects of training were generally observed in the 3- to 14-day windows. Center defenders showed a small reduction in coach rating when 14-day a smoothed load increased from −1 SD to the mean (-0.31, ±0.15; mean, ±90% confidence limits), whereas strikers and wide midfielders displayed a small increase in coach rating when load increased 1 SD above the mean. The effects of training load on FT:CT were mostly unclear or trivial, but effects of training load on hormones included a large increase in cortisol (102, ±58%) and moderate increase in testosterone (24, ±18%) in center defenders when 3-day smoothed training load increased 1 SD above the mean. A 1 SD increase in training load above the mean generally resulted in substantial reductions in testosterone:cortisol ratio.Conclusion: The effects of recent training on match performance and hormones in A-League football players highlight the importance of position-specific monitoring and training.
Purpose: Detrimental changes in tendon structure increase the risk of tendinopathies. The aim of this study was to investigate the influence of individual internal and external training loads and leg dominance on changes in the Achilles and patellar tendon structure. Methods: The internal structure of the Achilles and patellar tendons of both limbs of 26 elite Australian footballers was assessed using ultrasound tissue characterization at the beginning and the end of an 18-wk preseason. Linear-regression analysis was used to estimate the effects of training load on changes in the proportion of aligned and intact tendon bundles for each side. Standardization and magnitude-based inferences were used to interpret the findings. Results: Possibly to very likely small increases in the proportion of aligned and intact tendon bundles occurred in the dominant Achilles (initial value 81.1%; change, ±90% confidence limits 1.6%, ±1.0%), nondominant Achilles (80.8%; 0.9%, ±1.0%), dominant patellar (75.8%; 1.5%, ±1.5%), and nondominant patellar (76.8%; 2.7%, ±1.4%) tendons. Measures of training load had inconsistent effects on changes in tendon structure; eg, there were possibly to likely small positive effects on the structure of the nondominant Achilles tendon, likely small negative effects on the dominant Achilles tendon, and predominantly no clear effects on the patellar tendons. Conclusion: The small and inconsistent effects of training load are indicative of the role of recovery between tendon-overloading (training) sessions and the multivariate nature of the tendon response to load, with leg dominance a possible influencing factor. Keywords: tendinopathy, UTC, ultrasound, football, recoveryTendons transfer forces from muscles to bones to facilitate movement. Tendon properties change in response to forces applied to the tendon through training 1 and detrimental changes in tendon structure are associated with increased risk of tendinopathies. 2 Tendon stiffness, elastic modulus, and cross-sectional area are measures of tendon mechanical, material, and (macro)morphological properties, respectively, which generally increase after controlled episodes of increased loading. 1 Little is known about changes in the internal tendon structure in the form of fibrillar alignment (micromorphology) in response to training.Traditional assessment of the internal tendon structure using ultrasound imaging requires manual tracking of the ultrasound probe. This approach along with the subjective and qualitative interpretation of the ultrasound images does not allow for quantification of subtle changes in the tendon structure. 1,2 Ultrasound tissue characterization (UTC) is a novel approach that overcomes these limitations by using an automatic ultrasound-probe-tracking device and dedicated image analyzing algorithms. 3 The tracking device standardizes the transducer tilt, angle, focus, gain, and depth. 3,4 A software reconstructs and analyses a 3-dimensional image of the tendon and quantifies the internal tendon structure based on fibrillar...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.