In statistical process control, change point estimation is an essential requirement for diagnosing the source of a deviation when a process is out of control. In this study, an ANN- based method is proposed to estimate the change point in the multivariate normal process which is subjected to covariance variation. Since in a physical system parameter is correlated, correlation is kept constant to obtain realistic simulated data. Employing statistical simulation, different out of control scenarios are simulated and statistics are calculated for each scenario. This study is to predict the change point in the control chart using the simulated set and corresponding statistical sets, an ANN is adopted. The resulting model achieved a high accuracy of 90% in training and 80% testing with a reasonable level of confidence in the prediction. Also, results show that Bayesian reaches a higher accuracy than Levenberg in ANN training.
The identification of change points in statistical process control (SPC) data is the critical criterion for multivariate techniques when output is out-of-control condition. Therefore, monitoring all independent variables is essential and demands targeted attention to avoid errors at the systems control stage. However, estimating change-point in multivariate control charts is the main problem when these correlated quality characteristics monitor together. Therefore, we proposed a combination of an ensemble learning-based model of artificial neural networks with support vector machines to monitor process mean vector and covariance matrix shifts simultaneously to estimate the change point in a multivariable system. The performance of the final model indicated an estimated changing point with one sample over 6,000 simulated cases with a probability of 98 percent, which is a significantly high accuracy rating. Finding suggests the outcome of the project confirms that the proposed model can provide a precise estimating the change point by monitoring the mean vector and the covariance matrix simultaneously and, helps to identify those variable(s) responsible for an out-of-control condition. For further validation of the model, the performance of the proposed model has been compared with previous reported which confirms a better performance of the proposed model. Finally, the model was applied to monitor the performance of the solar hydrogen production system and the model identify the variables which have negative effects on the performance of the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.