The main part of the noise in digital images arises when taking pictures or transmission. There is noise in the imagescaptured by the image sensors of the real world. Noise, based on its causes can have different probability density functions.For example, such a model is called the Poisson distribution function of the random nature of photon arrival process that isconsistent with the distribution of pixel values measured. The parameters of the noise probability density function (PDF)can be achieved to some extent the properties of the sensor. But, we need to estimate the parameters for imaging settings. Ifwe assume that the PDF of noise is approximately Gaussian, then we need only to estimate the mean and variance becausethe Gaussian PDF with only two parameters is determined. In fact, in many cases, PDF of noise is not Gaussian and it hasunknown distribution. In this study, we introduce a generalized probability density function for modeling noise in imagesand propose a method to estimate its parameters. Because the generalized probability density function has multipleparameters, so use common parameter estimation techniques such as derivative method to maximize the likelihood functionwould be extremely difficult. In this study, we propose the use of evolutionary algorithms for global optimization. Theresults show that this method accurately estimates the probability density function parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.