The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but a similar reference has lacked for epigenomic studies. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection to-date of human epigenomes for primary cells and tissues. Here, we describe the integrative analysis of 111 reference human epigenomes generated as part of the program, profiled for histone modification patterns, DNA accessibility, DNA methylation, and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically-relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation, and human disease.
Primary triple negative breast cancers (TNBC) represent approximately 16% of all breast cancers1 and are a tumour type defined by exclusion, for which comprehensive landscapes of somatic mutation have not been determined. Here we show in 104 early TNBC cases, that at the time of diagnosis these cancers exhibit a wide and continuous spectrum of genomic evolution, with some exhibiting only a handful of somatic aberrations in a few pathways, whereas others contain hundreds of somatic events and multiple pathways implicated. Integration with matched whole transcriptome sequence data revealed that only ~36% of mutations are expressed. By examining single nucleotide variant (SNV) allelic abundance derived from deep re-sequencing (median >20,000 fold) measurements in 2414 somatic mutations, we determine for the first time in an epithelial tumour, the relative abundance of clonal genotypes among cases in the population. We show that TNBC vary widely and continuously in their clonal frequencies at the time of diagnosis, with basal subtype TNBC2,3 exhibiting more variation than non-basal TNBC. Although p53 and PIK3CA/PTEN somatic mutations appear clonally dominant compared with other pathways, in some tumours their clonal frequencies are incompatible with founder status. Mutations in cytoskeletal and cell shape/motility proteins occurred at lower clonal frequencies, suggesting they occurred later during tumour progression. Taken together our results show that future attempts to dissect the biology and therapeutic responses of TNBC will require the determination of individual tumour clonal genotypes.
BACKGROUND-Ovarian clear-cell and endometrioid carcinomas may arise from endometriosis, but the molecular events involved in this transformation have not been described.
Our group recently described recurrent somatic mutations of the miRNA processing gene DICER1 in non-epithelial ovarian cancer. Mutations appeared to be clustered around each of four critical metal-binding residues in the RNase IIIB domain of DICER1. This domain is responsible for cleavage of the 3' end of the 5p miRNA strand of a pre-mRNA hairpin. To investigate the effects of these cancer-associated 'hotspot' mutations, we engineered mouse DICER1-deficient ES cells to express wild-type and an allelic series of the mutant DICER1 variants. Global miRNA and mRNA profiles from cells carrying the metal-binding site mutations were compared to each other and to wild-type DICER1. The miRNA and mRNA profiles generated through the expression of the hotspot mutations were virtually identical, and the DICER1 hotspot mutation-carrying cells were distinct from both wild-type and DICER1-deficient cells. Further, miRNA profiles showed that mutant DICER1 results in a dramatic loss in processing of mature 5p miRNA strands but were still able to create 3p strand miRNAs. Messenger RNA (mRNA) profile changes were consistent with the loss of 5p strand miRNAs and showed enriched expression for predicted targets of the lost 5p-derived miRNAs. We therefore conclude that cancer-associated somatic hotspot mutations of DICER1, affecting any one of four metal-binding residues in the RNase IIIB domain, are functionally equivalent with respect to miRNA processing and are hypomorphic alleles, yielding a global loss in processing of mature 5p strand miRNA. We further propose that this resulting 3p strand bias in mature miRNA expression likely underpins the oncogenic potential of these hotspot mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.