We present experiments and theory for viscous fingering of a suspension of non-colloidal particles undergoing radial flow in a Hele-Shaw cell. As the suspension displaces air, shear-induced migration causes particles to move faster than the average suspension velocity and to accumulate on the suspension–air interface. The resultant particle accumulation generates a pattern in which low-concentration, low-viscosity suspension displaces high-concentration, high-viscosity suspension and is unstable due to the classic Saffman–Taylor instability mechanism. While the destabilising mechanism is well-understood, what remains unknown is the stabilising mechanism that suppresses fine fingers characteristic of miscible fingering. In this work, we demonstrate how the stable suspension–air interface interacts with the unstable miscible interface to set the critical wavelength. We present a linear stability analysis for the time-dependent radial flow and show that the wavenumber predicted by the analysis is in good agreement with parametric experiments investigating the effect of suspension concentration and gap thickness of the Hele-Shaw cell.
Partially wetting droplets under an airflow can exhibit complex behaviours that arise from the coupling of surface tension, inertia of the external flow and contact-line dynamics. Recent experiments by Hooshanginejad et al. (J. Fluid Mech., vol. 901, 2020) revealed that a millimetric partially wetting water droplet under an impinging jet can oscillate in place, split or depin away from the jet, depending on the magnitude (i.e.
$5\unicode{x2013}20\ {\rm m}\ {\rm s}^{-1}$
) and position of the jet. To rationalise the experimental observations, we develop a two-dimensional lubrication model of the droplet that incorporates the external pressure of the impinging high-Reynolds-number jet, in addition to the capillary and hydrostatic pressures of the droplet. Distinct from the previous model by Hooshanginejad et al. (J. Fluid Mech., vol. 901, 2020), we simulate the motion of the contact line using precursor film and disjoining pressure, which allows us to capture a wider range of droplet behaviours, including the droplet dislodging to one side. Our simulations exhibit a comparable time-scale of droplet deformations and similar outcomes as the experimental observations. We also obtain the analytical steady-state solutions of the droplet shapes and construct the minimum criteria for splitting and depinning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.